【題目】如圖,四邊形ABCD與BDEF均為菱形,∠DAB=∠DBF=60°,且FA=FC.
(Ⅰ)求證:AC⊥平面BDEF;
(Ⅱ)求證:FC∥平面EAD;
(Ⅲ)求二面角A﹣FC﹣B的余弦值.
【答案】(1)見解析(2)見解析(3)
【解析】試題分析:(Ⅰ)設與相交于點,連接,因為四邊形為菱形,所以,且為中點,由,知,由此能夠證明平面;(Ⅱ)因為四邊形與均為菱形,所以,平面平面,由此能夠證明平面;(Ⅲ)因為四邊形為菱形,且,所以為等邊三角形,因為為中點,所以,故平面,由兩兩垂直,建立空間直角坐標系,設,因為四邊形為菱形, ,則,所以, ,求得平面的法向量為,平面的法向量為,由此能求出二面角的余弦值.
試題解析:(Ⅰ)證明:設AC與BD相交于點O,
連接FO.因為四邊形ABCD為菱形,所以AC⊥BD,且O為AC中點.
又 FA=FC,所以 AC⊥FO.
因為 FO∩BD=O,
所以 AC⊥平面BDEF.
(Ⅱ)證明:因為四邊形ABCD與BDEF均為菱形,
所以AD∥BC,DE∥BF,
所以 平面FBC∥平面EAD.
又FC平面FBC,所以FC∥平面EAD.
(Ⅲ)解:因為四邊形BDEF為菱形,且∠DBF=60°,
所以△DBF為等邊三角形.
因為O為BD中點,所以FO⊥BD,故FO⊥平面ABCD.
由OA,OB,OF兩兩垂直,建立如圖所示的空間直角坐標系O﹣xyz. …(9分)
設AB=2.因為四邊形ABCD為菱形,∠DAB=60°,
則BD=2,所以OB=1,.所以 .
所以 ,.
設平面BFC的法向量為=(x,y,z),
則有,
取x=1,得.
∵平面AFC的法向量為=(0,1,0).
由二面角A﹣FC﹣B是銳角,得|cos<,>|==.
所以二面角A﹣FC﹣B的余弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=loga(1﹣x)+loga(x+3),(0<a<1).
(1)求函數(shù)f(x)的定義域;
(2)若函數(shù)f(x)的最小值為﹣2,求a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(, 是自然對數(shù)的底數(shù)).
(1)當時,求曲線在點處的切線方程;
(2)當時,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=x2+bx+c(b,c∈R,b<0).
(1)若f(x)的定義域為[0,1]時,值域也是[0,1],求b,c的值;
(2)若b=﹣2時,若函數(shù)g(x)= 對任意x∈[3,5],g(x)>c恒成立,試求實數(shù)c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】微信是騰訊公司推出的一種手機通訊軟件,它支持發(fā)送語音短信、視頻、圖片和文字,一經(jīng)推出便風靡全國,甚至涌現(xiàn)出一批在微信的朋友圈內銷售商品的人(被稱為微商).為了調查每天微信用戶使用微信的時間,某經(jīng)銷化妝品的微商在一廣場隨機采訪男性、女性用戶各50 名,其中每天玩微信超過6 小時的用戶列為“微信控”,否則稱其為“非微信控”,調查結果如下:
微信控 | 非微信控 | 合計 | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合計 | 56 | 44 | 100 |
(1)根據(jù)以上數(shù)據(jù),能否有60%的把握認為“微信控”與”性別“有關?
(2)現(xiàn)從調查的女性用戶中按分層抽樣的方法選出5 人并從選出的5 人中再隨機抽取3 人贈送200 元的護膚品套裝,記這3 人中“微信控”的人數(shù)為X,試求X 的分布列與數(shù)學期望.
參考公式:,其中n=a+b+c+d.
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 |
k0 | 0.455 | 0.708 | 1.323 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)在點處的切線方程為.
(1)若函數(shù)在時有極值,求的解析式;
(2)函數(shù)在區(qū)間上單調遞增,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近年來我國電子商務行業(yè)迎來蓬勃發(fā)展的新機遇相關管理部門推出了針對電商的商品和服務的評價體系.現(xiàn)從評價系統(tǒng)中選出次成功交易,并對其評價進行統(tǒng)計愛,商品和服務評價的列聯(lián)表如下表:
對服務好評 | 對服務不滿意 | 合計 | |
對商品好評 | |||
對商品不滿意 | |||
合計 |
(1)是否可以在犯錯誤概率不超過的前提下,認為商品好評與服務好評有關?
(2)若將頻率視為概率,某人在該購物平臺上進行的次購物中,設對商品和服務全好評的次數(shù)為隨機變量,求的數(shù)學期望.
參考數(shù)據(jù):
(,其中)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某批發(fā)市場對某種商品的日銷售量(單位:噸)進行統(tǒng)計,最近50天的統(tǒng)計結果如下:
若以上表中頻率作為概率,且每天的銷售量相互獨立.
(1)求5天中該種商品恰好有兩天的日銷售量為1.5噸的概率;
(2)已知每噸該商品的銷售利潤為2千元, 表示該種商品某兩天銷售利潤的和(單位:千元),求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 (a>b>0)的左、右焦點分別為F1,F2,點M(0,2)是橢圓的一個頂點,△F1MF2是等腰直角三角形.
(1)求橢圓的方程;
(2)過點M分別作直線MA,MB交橢圓于A,B兩點,設兩直線的斜率分別為k1,k2,且k1+k2=8,證明:直線AB過定點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com