【題目】如圖,設(shè)橢圓: ,長軸的右端點與拋物線: 的焦點重合,且橢圓的離心率是.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過作直線交拋物線于, 兩點,過且與直線垂直的直線交橢圓于另一點,求面積的最小值,以及取到最小值時直線的方程.
【答案】(Ⅰ); (Ⅱ)面積的最小值為9, .
【解析】試題分析:(Ⅰ)由已知求出拋物線的焦點坐標(biāo)即得橢圓中的,再由離心率可求得,從而得值,得標(biāo)準(zhǔn)方程;
(Ⅱ)本題考查圓錐曲線中的三角形面積問題,解題方法是設(shè)直線方程為,設(shè),把直線方程代入拋物線方程,化為的一元二次方程,由韋達(dá)定理得,由弦長公式得,同樣過與直線垂直的直線方程為,同樣代入橢圓方程,利用韋達(dá)定理得,其中, 是點的橫坐標(biāo),于是可得,這樣就可用表示出的面積, ,接著可設(shè),用換元法把表示為的函數(shù),利用導(dǎo)數(shù)的知識可求得最大值.
試題解析:
(Ⅰ)∵橢圓: ,長軸的右端點與拋物線: 的焦點重合,
∴,
又∵橢圓的離心率是,∴, ,
∴橢圓的標(biāo)準(zhǔn)方程為.
(Ⅱ)過點的直線的方程設(shè)為,設(shè), ,
聯(lián)立得,
∴, ,
∴.
過且與直線垂直的直線設(shè)為,
聯(lián)立得,
∴,故,
∴,
面積.
令,則, ,
令,則,即時, 面積最小,
即當(dāng)時, 面積的最小值為9,
此時直線的方程為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為, 是橢圓上任意一點,且點到橢圓的一個焦點的最大距離等于.
(Ⅰ)求橢圓的方程;
(Ⅱ)若過點的直線與橢圓相交于不同兩點,設(shè)為橢圓上一點,是否存在整數(shù),使得(其中為坐標(biāo)原點)?若存在,試求整數(shù)的所有取值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為實數(shù),函數(shù).
(1)求的極值;
(2)當(dāng)在什么范圍內(nèi)取值時,曲線與軸僅有一個交點?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種心臟手術(shù),成功率為,現(xiàn)準(zhǔn)備進行例此種手術(shù),試估計:
(1)恰好成功例的概率.
(2)恰好成功例的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底數(shù)).
(1)若, ,求函數(shù)的單調(diào)區(qū)間;
(2)若,且方程在內(nèi)有解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解某地區(qū)心肺疾病是否與性別有關(guān),在某醫(yī)院隨機地對入院
的50人進行了問卷調(diào)查,得到了如下的列聯(lián)表:
患心肺疾病 | 不患心肺疾病 | 合計 | |
男 | 20 | 5 | 25 |
女 | 10 | 15 | 25 |
合計 | 30 | 20 | 50 |
(1)用分層抽樣的方法在患心肺疾病的人群中抽取6人,其中男性抽多少人?
(2)在上述抽取的6人中選2人,求恰有一名女性的概率;
(3)為了研究心肺疾病是否與性別有關(guān),請計算出統(tǒng)計量,判斷是否有的把握認(rèn)為
患心肺疾病與性別有關(guān)?
右面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式: )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com