【題目】定義的零點的不動點,已知函數(shù).

Ⅰ.當(dāng)時,求函數(shù)的不動點;

Ⅱ.對于任意實數(shù),函數(shù)恒有兩個相異的不動點,求實數(shù)的取值范圍;

Ⅲ.若函數(shù)只有一個零點且,求實數(shù)的最小值.

【答案】(1) 的不動點為3,-1;(2) ;(3) 的最小值為1.

【解析】試題分析: (1)代入函數(shù)的表達式,根據(jù)零點概念求出方程的根;(2)把函數(shù)恒有兩個相異的不動點,轉(zhuǎn)化為對于任意實數(shù),恒有兩個不等的實數(shù)根問題,對任意實數(shù)都成立,求出b的范圍即可;(3) 函數(shù)只有一個零點,則,利用分離參數(shù)法得出,根據(jù)基本不等式求出最值.

試題解析:(1),

,

-1.

故函數(shù)的不動點為3,-1.

(2) 對于任意實數(shù),函數(shù)恒有兩個相異的不動點,

則對于任意實數(shù),恒有兩個不等的實數(shù)根.

所以,恒成立,

所以,

所以對任意實數(shù)都成立,

所以,

所以

(3),函數(shù)只有一個零點,,

所以,

所以

當(dāng)且僅當(dāng)時等號成立,

所以,的最小值為1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是自然對數(shù)的底數(shù).

(1)討論函數(shù)上的單調(diào)性;

(2)當(dāng)時,若存在,使得,求實數(shù)的取值范圍.(參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若滿足:對任意的,都有恒成立,試確定實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)求函數(shù)的單調(diào)遞減區(qū)間;

(2)求函數(shù)在區(qū)間上的最大值及最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓)的離心率為,連接橢圓的四個頂點得到的四邊形的面積為

(1)求橢圓的方程;

(2)設(shè)橢圓的左焦點為,右焦點為,直線過點且垂直于橢圓的長軸,動直線垂直于點,線段的垂直平分線交于點,求點的軌跡的方程;

(3)設(shè)為坐標原點,取上不同于的點,以為直徑作圓與相交另外一點,求該圓面積的最小值時點的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點是橢圓上任一點,點到直線的距離為,到點的距離為,且.直線與橢圓交于不同兩點都在軸上方,且.

1求橢圓的方程;

2當(dāng)為橢圓與軸正半軸的交點時,求直線方程;

3對于動直線,是否存在一個定點,無論如何變化,直線總經(jīng)過此定點?若存在,求出該定點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 的焦點為,過點的直線相交于、兩點,點關(guān)于軸的對稱點為

(Ⅰ)判斷點是否在直線上,并給出證明;

(Ⅱ)設(shè),求的內(nèi)切圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中,曲線與直線)交于,兩點.

1)當(dāng)時,分別求在點處的切線方程;

2軸上是否存在點,使得當(dāng)變動時,總有?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】A已知直線的參數(shù)方程為為參數(shù)),在直角坐標系中,以為極點, 軸正半軸為極軸建立極坐標系,圓的方程為

(1)求圓的圓心的極坐標;

(2)判斷直線與圓的位置關(guān)系.

已知不等式的解集為

(1)求實數(shù)的值;

(2)若不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案