【題目】已知四棱錐S﹣ABCD的底面ABCD是正方形,SA⊥底面ABCD,E是SC上的任意一點(diǎn).過(guò)點(diǎn)E的平面α垂直于平面SAC.

(1)請(qǐng)作出平面α截四棱錐S﹣ABCD的截面(只需作圖并寫出作法);
(2)當(dāng)SA=AB時(shí),求二面角B﹣SC﹣D的大。

【答案】
(1)解:∵SA⊥底面ABCD,∴SA⊥BD,

∵底面ABCD是正方形,∴BD⊥AC,

則BD⊥平面SAC,

若點(diǎn)E的平面α垂直于平面SAC,

則平面α 與底面的交線平行于BD即可.


(2)解:如圖所示建立空間直角坐標(biāo)系,

點(diǎn)A為坐標(biāo)原點(diǎn),AB,AD,AS所在的直線分別為x,y,z軸.設(shè)AB=1.

由題意得B(1,0,0),S(0,0,1),C(1,1,0),D(0,1,0),

=(1,0,﹣1),又 =(1,1,﹣1)

設(shè)平面BSC的法向量為 (x1,y1,z1),則

,令z1=1,則 =(1,0,1,

=(0,﹣1,1) =(1,0,0),

設(shè)平面SCD的法向量為 =(x2,y2,z2),則

,令y2=1,則 =(0,1,1),

設(shè)二面角B﹣SC﹣D的平面角為α,則

|cosα|= = =

顯然二面角B﹣SC﹣D的平面角為α為鈍角,所以α=120°,

即二面角C﹣PB﹣D的大小為120°


【解析】(1)根據(jù)條件先證明BD⊥平面SAC,則面α 與底面的交線平行于BD即可;(2)建立空間直角坐標(biāo)系,求出平面BSC、平面SCD的法向量,利用向量的夾角公式,即可求二面角B﹣SC﹣D的大小.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用平面與平面垂直的性質(zhì),掌握兩個(gè)平面垂直,則一個(gè)平面內(nèi)垂直于交線的直線與另一個(gè)平面垂直即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓 的左右焦點(diǎn)分別為F1 , F2 , 離心率為 ,過(guò)點(diǎn)F1且垂直于x軸的直線被橢圓截得的弦長(zhǎng)為 ,直線l:y=kx+m與橢圓交于不同的A,B兩點(diǎn).
(1)求橢圓C的方程;
(2)若在橢圓C上存在點(diǎn)Q滿足: (O為坐標(biāo)原點(diǎn)).求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校擬在廣場(chǎng)上建造一個(gè)矩形花園,如圖所示,中間是完全相同的兩個(gè)橢圓型花壇,每個(gè)橢圓型花壇的面積均為216π平方米,兩個(gè)橢圓花壇的距離是1.5米.整個(gè)矩形花壇的占地面積為S.
(注意:橢圓面積為πab,其中a,b分別為橢圓的長(zhǎng)短半軸長(zhǎng))

(1)根據(jù)圖中所給數(shù)據(jù),試用a、b表示S;
(2)當(dāng)橢圓形花壇的長(zhǎng)軸長(zhǎng)為多少米時(shí),所建矩形花園占地最少?并求出最小面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax2+bx+3a+b是偶函數(shù),且其定義域?yàn)閇a﹣1,2a],則( )
A. ,b=0
B.a=﹣1,b=0
C.a=1,b=1
D.a= ,b=﹣1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=16x﹣2×4x+5,x∈[﹣1,2]
(1)若f(x)=4,求x;
(2)求f(x)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2+2ax+2,x∈[﹣5,5],
(1)當(dāng)a=﹣1時(shí),求函數(shù)的最大值和最小值;
(2)求實(shí)數(shù)a的取值范圍,使y=f(x)在區(qū)間[﹣5,5]上是單調(diào)減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正四棱錐S﹣ABCD中,O為頂點(diǎn)在底面內(nèi)的投影,P為側(cè)棱SD的中點(diǎn),且SO=OD,則直線BC與平面PAC的夾角是(
A.30°
B.45°
C.60°
D.75°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于二次函數(shù)y=﹣4x2+8x﹣3,
(1)指出圖象的開(kāi)口方向、對(duì)稱軸方程、頂點(diǎn)坐標(biāo);
(2)求函數(shù)的最大值或最小值;
(3)寫出函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)y=f(x)的定義域是[0,2],則函數(shù)y=f(2x﹣1)的定義域是( )
A.{x|0≤x≤1}
B.{x|0≤x≤2}
C.{x| ≤x≤ }
D.{x|﹣1≤x≤3}

查看答案和解析>>

同步練習(xí)冊(cè)答案