【題目】在平面直角坐標(biāo)系xOy中,動點到兩坐標(biāo)軸的距離之和等于它到定點的距離,記點P的軌跡為,給出下列四個結(jié)論:①關(guān)于原點對稱;②關(guān)于直線對稱;③直線與有無數(shù)個公共點;④在第一象限內(nèi),與x軸和y軸所圍成的封閉圖形的面積小于.其中正確的結(jié)論是________.(寫出所有正確結(jié)論的序號)
【答案】②③④
【解析】
由題意可得當(dāng)xy≥0,可得xy+x+y﹣1=0,當(dāng)xy<0時,﹣xy+x+y﹣1=0,畫出P的軌跡圖形,由圖形可得不關(guān)于原點對稱,關(guān)于直線y=x對稱,且直線y=1與曲線有無數(shù)個公共點;曲線在第一象限與坐標(biāo)軸圍成的封閉圖形的面積小于邊長為1的等腰三角形的面積,即可得到正確結(jié)論個數(shù).
解:動點P(x,y)到兩坐標(biāo)軸的距離之和等于
它到定點A(1,1)的距離,
可得|x|+|y|,
平方化為|xy|+x+y﹣1=0,
當(dāng)xy≥0,可得xy+x+y﹣1=0,
即y,即y=﹣1,
當(dāng)xy<0時,﹣xy+x+y﹣1=0,
即有(1﹣x)y=1﹣x.
畫出動點P的軌跡為圖:
①Γ關(guān)于原點對稱,不正確;
②Γ關(guān)于直線y=x對稱,正確;
③直線y=1與Γ有無數(shù)個公共點,正確;
④在第一象限內(nèi),Γ與x軸和y軸所圍成的封閉圖形的面積小于,正確.
故答案為:②③④.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某超市一年中各月份的收入與支出單位:萬元情況的條形統(tǒng)計圖已知利潤為收入與支出的差,即利潤收入一支出,則下列說法正確的是
A. 利潤最高的月份是2月份,且2月份的利潤為40萬元
B. 利潤最低的月份是5月份,且5月份的利潤為10萬元
C. 收入最少的月份的利潤也最少
D. 收入最少的月份的支出也最少
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù),傾斜角),曲線C的參數(shù)方程為(為參數(shù),),以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系。
(1)寫出曲線的普通方程和直線的極坐標(biāo)方程;
(2)若直線與曲線恰有一個公共點,求點的極坐標(biāo)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了讓稅收政策更好的為社會發(fā)展服務(wù),國家在修訂《中華人民共和國個人所得稅法》之后,發(fā)布了《個人所得稅專項附加扣除暫行辦法》,明確“專項附加扣除”就是子女教育、繼續(xù)教育大病醫(yī)療、住房貸款利息、住房租金贈養(yǎng)老人等費用,并公布了相應(yīng)的定額扣除標(biāo)準(zhǔn),決定自2019年1月1日起施行,某機(jī)關(guān)為了調(diào)查內(nèi)部職員對新個稅方案的滿意程度與年齡的關(guān)系,通過問卷調(diào)查,整理數(shù)據(jù)得如下2×2列聯(lián)表:
40歲及以下 | 40歲以上 | 合計 | |
基本滿意 | 15 | 30 | 45 |
很滿意 | 25 | 10 | 35 |
合計 | 40 | 40 | 80 |
(1)根據(jù)列聯(lián)表,能否有99%的把握認(rèn)為滿意程度與年齡有關(guān)?
(2)為了幫助年齡在40歲以下的未購房的8名員工解決實際困難,該企業(yè)擬員工貢獻(xiàn)積分(單位:分)給予相應(yīng)的住房補貼(單位:元),現(xiàn)有兩種補貼方案,方案甲:;方案乙:.已知這8名員工的貢獻(xiàn)積分為2分,3分,6分,7分,7分,11分,12分,12分,將采用方案甲比采用方案乙獲得更多補貼的員工記為“類員工”.為了解員工對補貼方案的認(rèn)可度,現(xiàn)從這8名員工中隨機(jī)抽取4名進(jìn)行面談,求恰好抽到3名“類員工”的概率。
附:,其中.
參考數(shù)據(jù):
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓經(jīng)過,,三點,是線段上的動點,,是過點且互相垂直的兩條直線,其中交軸于點,交圓于、兩點.
(1)若,求直線的方程;
(2)若是使恒成立的最小正整數(shù).
①求的值;
②求三角形的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓經(jīng)過點,且離心率為.
(1)求橢圓的方程;
(2)若點、在橢圓上,且四邊形是矩形,求矩形的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:的左焦點為F(﹣1,0),離心率為,過點F的直線l與橢圓C交于A、B兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)過點F不與坐標(biāo)軸垂直的直線交橢圓C于A、B兩點,線段AB的垂直平分線與x軸交于點G,求點G橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知長方形中,,為的中點. 將沿折起,使得平面平面.
(1)求證: .
(2)點是線段上的一動點,當(dāng)二面角大小為時,試確定點的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點F是拋物線C:y2=2px(p>0)的焦點,點M(x0,1)在C上,且|MF|=.
(1)求p的值;
(2)若直線l經(jīng)過點Q(3,-1)且與C交于A,B(異于M)兩點,證明:直線AM與直線BM的斜率之積為常數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com