【題目】綜合題。
(1)已知x< ,求函數(shù)y=4x﹣2+ 的最大值;
(2)已知x>0,y>0且 =1,求x+y的最小值.

【答案】
(1)解:∵x< ,∴4x﹣5<0.

∴y=4x﹣5+ +3=﹣[(5﹣4x)+ ]+3

≤﹣2 +3=1,當(dāng)且僅當(dāng)x=1時(shí)取等號(hào).

∴ymax=1


(2)解:∵x>0,y>0且 =1,

∴x+y=(x+y) =10+ ≥10+2 =16,當(dāng)且僅當(dāng)y=3x=12時(shí)取等號(hào).

∴x+y的最小值為16


【解析】(1)變形利用基本不等式的性質(zhì)即可得出;(2)利用“乘1法”和基本不等式的性質(zhì)即可得出.
【考點(diǎn)精析】利用基本不等式對(duì)題目進(jìn)行判斷即可得到答案,需要熟知基本不等式:,(當(dāng)且僅當(dāng)時(shí)取到等號(hào));變形公式:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》中,將底面為長(zhǎng)方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽(yáng)馬,將四個(gè)面都為直角三角形的四面體稱之為鱉臑,如圖,網(wǎng)格紙上正方形小格的邊長(zhǎng)為1,圖中粗線畫出的是某幾何體毛坯的三視圖,第一次切削,將該毛坯得到一個(gè)表面積最大的長(zhǎng)方體,第二次切削沿長(zhǎng)方體的對(duì)角面刨開,得到兩個(gè)三棱柱,第三次切削將兩個(gè)三棱柱分別沿棱和表面的對(duì)角線刨開得到兩個(gè)鱉臑和兩個(gè)陽(yáng)馬,則陽(yáng)馬與鱉臑的體積之比為(
A.3:1
B.2:1
C.1:1
D.1:2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐P﹣ABCD中,底面ABCD為直角梯形,AB⊥AD,BC∥AD,且AB=BC=2,AD=3,PA⊥平面ABCD且PA=2,則PB與平面PCD所成角的正弦值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐P﹣ABCD中,PB⊥底面ABCD,CD⊥PD.底面ABCD為直角梯形,AD∥BC,AB⊥BC,AB=AD=PB=3.點(diǎn)E在棱PA上,且PE=2EA. (Ⅰ)求異面直線PA與CD所成的角;
(Ⅱ)求證:PC∥平面EBD;
(Ⅲ)求二面角A﹣BE﹣D的大。ㄓ梅慈呛瘮(shù)表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列不等式的解集是空集的是(
A.x2﹣x+1>0
B.﹣2x2+x+1>0
C.2x﹣x2>5
D.x2+x>2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l在x軸上的截距比在y軸上的截距大1,且過點(diǎn)(6,-2),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)定點(diǎn)F1(0,﹣3)、F2(0,3),動(dòng)點(diǎn)P滿足條件|PF1|+|PF2|=a+ (a>0),則點(diǎn)P的軌跡是(
A.橢圓
B.線段
C.不存在
D.橢圓或線段

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐P﹣ABCD中PA⊥平面ABCD,且PA=4PQ=4,底面為直角梯形, ∠CDA=∠BAD=90°, ,M,N分別是PD,PB的中點(diǎn).

(1)求證:MQ∥平面PCB;
(2)求截面MCN與底面ABCD所成二面角的大小;
(3)求點(diǎn)A到平面MCN的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知x>0,y>0,且2x+8y-xy=0,求:
(1)xy的最小值;
(2)x+ y的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案