【題目】已知一個(gè)放置在水平桌面上的密閉直三棱柱容器,如圖1為正三角形,,,里面裝有體積為的液體,現(xiàn)將該棱柱繞旋轉(zhuǎn)至圖2.在旋轉(zhuǎn)過(guò)程中,以下命題中正確的個(gè)數(shù)是(

①液面剛好同時(shí)經(jīng)過(guò),三點(diǎn);

②當(dāng)平面與液面成直二面角時(shí),液面與水平桌面的距離為;

③當(dāng)液面與水平桌面的距離為時(shí),與液面所成角的正弦值為.

A.0B.1C.2D.3

【答案】D

【解析】

①若液面剛好同時(shí)經(jīng)過(guò),,三點(diǎn),則液體的體積為四棱錐,進(jìn)而求解即可;②當(dāng)平面與液面成直二面角時(shí),即為圖2的位置,畫出圖形,可先求得液面上方的三棱柱以四邊形為底面的高,再與直三棱柱以四邊形為底面的高求差即可;③由①可得此時(shí)液面與水平桌面的距離為,畫出圖形,即可求解.

①若液面剛好同時(shí)經(jīng)過(guò),,三點(diǎn),則液體的體積為四棱錐,

因?yàn)?/span>,所以①正確;

②當(dāng)平面與液面成直二面角時(shí),即為圖2的位置,設(shè)液面與直三棱柱的交點(diǎn)為,如圖所示,

因?yàn)橹比庵?/span>的體積為,

所以直棱柱的體積為,

所以,,則在邊上的高為,

因?yàn)樵?/span>邊上的高為,所以液面與水平桌面的距離為,所以②正確;

③當(dāng)液面剛好同時(shí)經(jīng)過(guò),,三點(diǎn)時(shí),如圖所示,

此時(shí),則,

易得,則邊上的高為,

所以,

設(shè)點(diǎn)到平面的距離為,則,即,

即液面與水平桌面的距離為,

由棱柱的對(duì)稱性可得點(diǎn)到平面的距離為,設(shè)與液面所成角為,

,所以③正確,

所以①②③正確,

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若處的切線與軸平行,求的極值;

2)當(dāng)時(shí),試討論方程實(shí)數(shù)根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】 設(shè)橢圓的左焦點(diǎn)為,左頂點(diǎn)為,頂點(diǎn)為B.已知為原點(diǎn)).

(Ⅰ)求橢圓的離心率;

(Ⅱ)設(shè)經(jīng)過(guò)點(diǎn)且斜率為的直線與橢圓在軸上方的交點(diǎn)為,圓同時(shí)與軸和直線相切,圓心在直線上,且,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-5:不等式選講

設(shè)函數(shù)

(1)證明:;

(2)若不等式的解集是非空集,求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】本小題滿分13分)

工作人員需進(jìn)入核電站完成某項(xiàng)具有高輻射危險(xiǎn)的任務(wù),每次只派一個(gè)人進(jìn)去,且每個(gè)人只派一次,工作時(shí)間不超過(guò)10分鐘,如果有一個(gè)人10分鐘內(nèi)不能完成任務(wù)則撤出,再派下一個(gè)人.現(xiàn)在一共只有甲、乙、丙三個(gè)人可派,他們各自能完成任務(wù)的概率分別,假設(shè)互不相等,且假定各人能否完成任務(wù)的事件相互獨(dú)立.

1)如果按甲在先,乙次之,丙最后的順序派人,求任務(wù)能被完成的概率.若改變?nèi)齻(gè)人被派出的先后順序,任務(wù)能被完成的概率是否發(fā)生變化?

2)若按某指定順序派人,這三個(gè)人各自能完成任務(wù)的概率依次為,其中的一個(gè)排列,求所需派出人員數(shù)目的分布列和均值(數(shù)字期望);

3)假定,試分析以怎樣的先后順序派出人員,可使所需派出的人員數(shù)目的均值(數(shù)字期望)達(dá)到最小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】生活中人們常用“通五經(jīng)貫六藝”形容一個(gè)人才識(shí)技藝過(guò)人,這里的“六藝”其實(shí)源于中國(guó)周朝的貴族教育體系,具體包括“禮、樂、射、御、書、數(shù)”.為弘揚(yáng)中國(guó)傳統(tǒng)文化,某校在周末學(xué)生業(yè)余興趣活動(dòng)中開展了“六藝”知識(shí)講座,每藝安排一節(jié),連排六節(jié),則滿足“數(shù)”必須排在前兩節(jié),“禮”和“樂”必須分開安排的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)積極響應(yīng)國(guó)家“科技創(chuàng)新”的號(hào)召,大力研發(fā)人工智能產(chǎn)品,為了對(duì)一批新研發(fā)的產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到一組銷售數(shù)據(jù),如下表所示:

試銷單價(jià)(百元)

1

2

3

4

5

6

產(chǎn)品銷量(件)

91

86

78

73

70

附:參考公式:,

參考數(shù)據(jù):,.

1)求的值;

2)已知變量具有線性相關(guān)關(guān)系,求產(chǎn)品銷量(件)關(guān)于試銷單價(jià)(百元)的線性回歸方程(計(jì)算結(jié)果精確到整數(shù)位);

3)用表示用正確的線性回歸方程得到的與對(duì)應(yīng)的產(chǎn)品銷量的估計(jì)值.當(dāng)銷售數(shù)據(jù)的殘差的絕對(duì)值時(shí),則將銷售數(shù)據(jù)稱為一個(gè)“有效數(shù)據(jù)”.現(xiàn)從這6組銷售數(shù)據(jù)中任取2組,求抽取的2組銷售數(shù)據(jù)都是“有效數(shù)據(jù)”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)質(zhì)量檢驗(yàn)員為了檢測(cè)生產(chǎn)線上零件的質(zhì)量情況,從生產(chǎn)線上隨機(jī)抽取了個(gè)零件進(jìn)行測(cè)量,根據(jù)所測(cè)量的零件尺寸(單位:mm),得到如下的頻率分布直方圖:

1)根據(jù)頻率分布直方圖,求這個(gè)零件尺寸的中位數(shù)(結(jié)果精確到);

2)若從這個(gè)零件中尺寸位于之外的零件中隨機(jī)抽取個(gè),設(shè)表示尺寸在上的零件個(gè)數(shù),求的分布列及數(shù)學(xué)期望;

3)已知尺寸在上的零件為一等品,否則為二等品,將這個(gè)零件尺寸的樣本頻率視為概率. 現(xiàn)對(duì)生產(chǎn)線上生產(chǎn)的零件進(jìn)行成箱包裝出售,每箱個(gè). 企業(yè)在交付買家之前需要決策是否對(duì)每箱的所有零件進(jìn)行檢驗(yàn),已知每個(gè)零件的檢驗(yàn)費(fèi)用為. 若檢驗(yàn),則將檢驗(yàn)出的二等品更換為一等品;若不檢驗(yàn),如果有二等品進(jìn)入買家手中,企業(yè)要向買家對(duì)每個(gè)二等品支付元的賠償費(fèi)用. 現(xiàn)對(duì)一箱零件隨機(jī)抽檢了個(gè),結(jié)果有個(gè)二等品,以整箱檢驗(yàn)費(fèi)用與賠償費(fèi)用之和的期望值作為決策依據(jù),該企業(yè)是否對(duì)該箱余下的所有零件進(jìn)行檢驗(yàn)?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠生產(chǎn)一種產(chǎn)品的標(biāo)準(zhǔn)長(zhǎng)度為,只要誤差的絕對(duì)值不超過(guò)就認(rèn)為合格,工廠質(zhì)檢部抽檢了某批次產(chǎn)品1000件,檢測(cè)其長(zhǎng)度,繪制條形統(tǒng)計(jì)圖如圖:

1)估計(jì)該批次產(chǎn)品長(zhǎng)度誤差絕對(duì)值的數(shù)學(xué)期望;

2)如果視該批次產(chǎn)品樣本的頻率為總體的概率,要求從工廠生產(chǎn)的產(chǎn)品中隨機(jī)抽取2件,假設(shè)其中至少有1件是標(biāo)準(zhǔn)長(zhǎng)度產(chǎn)品的概率不小于0.8時(shí),該設(shè)備符合生產(chǎn)要求.現(xiàn)有設(shè)備是否符合此要求?若不符合此要求,求出符合要求時(shí),生產(chǎn)一件產(chǎn)品為標(biāo)準(zhǔn)長(zhǎng)度的概率的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案