【題目】設(shè)函數(shù)f(x)=x2eax , a>0.
(1)證明:函數(shù)y=f(x)在(0,+∞)上為增函數(shù);
(2)若方程f(x)﹣1=0有且只有兩個不同的實數(shù)根,求實數(shù)a的值.

【答案】
(1)證明:f(x)的定義域R,求導(dǎo),f′(x)=2xeax+ax2eax=xeax(ax+2),

當(dāng)x∈(0,+∞)時,a>0,則eax>0,則xeax(ax+2)>0,

則f′(x)>0,

∴函數(shù)y=f(x)在(0,+∞)上為增函數(shù)


(2)令f′(x)=0,記得x=﹣v或x=0,

x

(﹣∞,﹣

,0)

0

(0,+∞)

f′(x)

+

0

0

+

f(x)

遞增

極大值

遞減

極小值

遞增

則當(dāng)x=﹣ 時,函數(shù)有極大值f(﹣ )= ,

當(dāng)x=0時,函數(shù)有極小值f(0)=0,

當(dāng)x<0時,f(x)>0,x→﹣∞時,f(x)→0,x→+∞時,f(x)→+∞,

由f(x)﹣1=0,即f(x)=1有且只有兩個不同的實數(shù)根,

=1,解得:a= ,(負(fù)根舍去)

實數(shù)a的值


【解析】(1)求導(dǎo),由x∈(0,+∞)則f′(x)>0,則函數(shù)y=f(x)在(0,+∞)上為增函數(shù);(2)求導(dǎo),f′(x)=0,根據(jù)函數(shù)的單調(diào)性即可求得f(x)極大值,由f(x)=1有且只有兩個不同的實數(shù)根,即 =1,即可求得實數(shù)a的值.
【考點精析】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識點,需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個盒子中裝有4個編號依次為1、2、3、4的球,這4個球除號碼外完全相同,先從盒子中隨機取一個球,該球的編號為X,將球放回袋中,然后再從袋中隨機取一個球,該球的編號為Y
(1)列出所有可能結(jié)果.
(2)求事件A=“取出球的號碼之和小于4”的概率.
(3)求事件B=“編號X<Y”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=x3+(k﹣1)x2+(k+5)x﹣1在區(qū)間(0,2)上不單調(diào),則實數(shù)k的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 且滿足a1= ,2Sn﹣SnSn1=1(n≥2).
(1)猜想Sn的表達(dá)式,并用數(shù)學(xué)歸納法證明;
(2)設(shè)bn= ,n∈N* , 求bn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了估計某人的射擊技術(shù)情況,在他的訓(xùn)練記錄中抽取50次檢驗,他的命中環(huán)數(shù)如下:10,5,5,8,7,8,6,9,7,8,6,6,5,6,7,8,10,9,7,9,8,7,6,5,9,9,8,8,5,8,6,7,6,9,6,8,8,8,6,7,6,8,107,10,8,7,7,9,5
(1)列出頻率分布表
(2)畫出頻率分布的直方圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線l與兩直線y=1,x﹣y﹣7=0分別交于A,B兩點,若直線AB的中點是M(1,﹣1),則直線l的斜率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為迎接黨的“十九”大的召開,某校組織了“歌頌祖國,緊跟黨走”黨史知識競賽,從參加考試的學(xué)生中抽出50名學(xué)生,將其成績(滿分100分,成績均為整數(shù))分成六段, , 后繪制頻率分布直方圖(如下圖所示)

(Ⅰ)求頻率分布圖中的值;

(Ⅱ)估計參加考試的學(xué)生得分不低于80的概率;

(Ⅲ)從這50名學(xué)生中,隨機抽取得分在的學(xué)生2人,求此2人得分都在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 =﹣1,求下列各式的值: (Ⅰ)
(Ⅱ) cos2 +α)﹣sin(π﹣α)cos(π+α)+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若,證明;

(2)若,求的取值范圍;并證明此時的極值存在且與無關(guān).

查看答案和解析>>

同步練習(xí)冊答案