(本小題滿分13分)

設(shè)是數(shù)列)的前項(xiàng)和,,且,

(I)證明:數(shù)列)是常數(shù)數(shù)列;

(II)試找出一個(gè)奇數(shù),使以18為首項(xiàng),7為公比的等比數(shù)列)中的所有項(xiàng)都是數(shù)列中的項(xiàng),并指出是數(shù)列中的第幾項(xiàng).

 

【答案】

(I)數(shù)列)是常數(shù)數(shù)列

(II)若是數(shù)列中的第項(xiàng),由,取,得,是數(shù)列中的第項(xiàng).

【解析】解:(I)當(dāng)時(shí),由已知得

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012051810592021872135/SYS201205181100247968377318_DA.files/image014.png">,所以. …………………………①

于是. …………………………………………………②

由②-①得:.……………………………………………③

于是.……………………………………………………④

由④-③得:.…………………………………………………⑤

即數(shù)列)是常數(shù)數(shù)列.

(II)由①有,所以

由③有,所以

而⑤表明:數(shù)列分別是以,為首項(xiàng),6為公差的等差數(shù)列.

所以,,

由題設(shè)知,.當(dāng)為奇數(shù)時(shí),為奇數(shù),而為偶數(shù),所以不是數(shù)列中的項(xiàng),只可能是數(shù)列中的項(xiàng).

是數(shù)列中的第項(xiàng),由,取,得,此時(shí),由,得,,從而是數(shù)列中的第項(xiàng).

(注:考生取滿足,的任一奇數(shù),說明是數(shù)列中的第項(xiàng)即可)

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分13分)已知函數(shù).

(1)求函數(shù)的最小正周期和最大值;

(2)在給出的直角坐標(biāo)系中,畫出函數(shù)在區(qū)間上的圖象.

(3)設(shè)0<x<,且方程有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052519321600001521/SYS201205251933396875338731_ST.files/image001.png">的函數(shù)是奇函數(shù).

(1)求的值;(2)判斷函數(shù)的單調(diào)性;

(3)若對任意的,不等式恒成立,求k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題

 

(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,的中點(diǎn)。

(Ⅰ)求證:∥平面;

(Ⅱ)求異面直線所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[來源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)

已知為銳角,且,函數(shù),數(shù)列{}的首項(xiàng).

(1) 求函數(shù)的表達(dá)式;

(2)在中,若A=2,,BC=2,求的面積

(3) 求數(shù)列的前項(xiàng)和

 

 

查看答案和解析>>

同步練習(xí)冊答案