【題目】已知全集U=R,集合A={x|1<x≤8},B={x|2<x<9},C={x|x≥a}.
(1)求A∩B,A∪B;
(2)如果A∩C≠,求a的取值范圍.

【答案】
(1)解:全集U=R,集合A={x|1<x≤8},B={x|2<x<9},

∴A∩B={x|2<x≤8},A∪B={x|1<x<9}


(2)解:∵集合A={x|1<x≤8},C={x|x≥a},

A∩C≠,

∴a≤8,

∴a的取值范圍為(﹣∞,8]


【解析】(1)利用交集、并集的定義能求出結果.(2)利用交集的性質結合不等式的性質能求出a的取值范圍.
【考點精析】解答此題的關鍵在于理解集合的并集運算的相關知識,掌握并集的性質:(1)AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A;(2)若A∪B=B,則AB,反之也成立,以及對集合的交集運算的理解,了解交集的性質:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,則AB,反之也成立.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,五面體中,四邊形是菱形, 是邊長為2的正三角形, ,

(1)證明: ;

(2)若在平面內的正投影為,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|x2﹣2x﹣8≤0},B={x| <0},U=R.
(1)求A∪B;
(2)求(UA)∩B;
(3)如果C={x|x﹣a>0},且A∩C≠,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線 與橢圓 有且只有一個公共點

I)求橢圓C的標準方程;

II)若直線 CA,B兩點,且PAPB,求b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)的解析式滿足
(1)求函數(shù)f(x)的解析式;
(2)當a=1時,試判斷函數(shù)f(x)在區(qū)間(0,+∞)上的單調性,并加以證明;
(3)當a=1時,記函數(shù) ,求函數(shù)g(x)在區(qū)間 上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)x=1處的切線與直線平行。

(Ⅰ)求a的值并討論函數(shù)y=f(x)上的單調性。

(Ⅱ)若函數(shù) (為常數(shù))有兩個零點,

(1)m的取值范圍;

(2)求證: 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,直線的參數(shù)方程為為參數(shù)),以原點為極點, 軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為

求曲線的直角坐標方程,并指出其表示何種曲線;

設直線與曲線交于兩點,若點的直角坐標為,

試求當時, 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 恰有兩個極值點,且.

(1)求實數(shù) 的取值范圍;

(2)若不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,曲線是過點,傾斜角為的直線,以直角坐標系的原點為極點, 軸正半軸為極軸建立極坐標系,曲線的極坐標方程是.

(1)求曲線的普通方程和曲線的一個參數(shù)方程;

(2)曲線與曲線相交于兩點,求的值.

查看答案和解析>>

同步練習冊答案