精英家教網 > 高中數學 > 題目詳情
已知f(x)=ax-2
4-ax
 -1?(a>0且a≠1)

(1)求f(x)的定義域;
(2)是否存在實數a使得函數f(x)對于區(qū)間(2,+∞)上的一切x都有f(x)≥0?
分析:(1)由題意知函數的自變量要滿足4-ax>0,移項后,兩邊取對數,針對于底數與1的關系進行討論,根據指數函數的性質,得到當a取值不同時,對應的自變量不同,分別寫出結果.
(2)根據函數的底數不同,所得到的定義域,求出定義域與所給的自變量的范圍的公共部分,把不等式變形,移項,兩邊平方,整理出最簡形式,根據恒成立思想,得到不存在滿足條件的a的值.
解答:解:(1)由題意知函數的自變量要滿足4-ax>0
∴ax<4
兩邊取對數,針對于底數與1的關系進行討論,
a>1時,定義域(-∞,loga4];
0<a<1時,定義域[loga4,+∞)
(2)不存在.
∵當a>1時,定義域(-∞,loga4];
對于區(qū)間(2,+∞)上的一切x,
只有1<a<2,兩個范圍才有公共部分,
當1<a<2時,自變量為(2,loga4]
ax-1≥2
4-ax

兩邊平方后移項整理成最簡形式,
(ax+1)2≥16,
∴ax+1≥4
∴ax≥3
∵ax是一個增函數,
∴只要a2≥3恒成立即可,
而當1<a<2時,不恒成立,
同理可得當0<a<1時,也不存在a,使得式子恒成立,
故總上可知不存在這樣的a.
點評:本題考查指數函數的定義域,考查函數的恒成立問題,考查指數函數的單調性,是一個綜合題目,這種題目考查的內容比較全面,可以作為解答題目出現在高考卷中.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知f(x)=A
x
+B
1-x
(A>0,B>0)

(1)求f(x)的定義域;
(2)求f(x)的最大值和最小值;
(3)若g(x)=
mx-1
+
1-nx
(m>n>0)
,如何由(2)的結論求g(x)的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)=ax-
1x
,g(x)=lnx,(x>0,a∈R是常數).
(1)求曲線y=g(x)在點P(1,g(1))處的切線l.
(2)是否存在常數a,使l也是曲線y=f(x)的一條切線.若存在,求a的值;若不存在,簡要說明理由.
(3)設F(x)=f(x)-g(x),討論函數F(x)的單調性.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)=
ax+1x-1
,x∈(1,+∞),f(2)=3
(1)求a;
(2)判斷并證明函數單調性.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•湖南模擬)已知f(x)=ax+
bx
+3-2a(a,b∈R)
的圖象在點(1,f(1)處的切線與直線y=3x+1平行.
(1)求a與b滿足的關系式;
(2)若a>0且f(x)≥3lnx在[1,+∞)上恒成立,求a的取值范圍.

查看答案和解析>>

同步練習冊答案