【題目】已知函數(shù)f(x)=ax3+3x2+1,若至少存在兩個(gè)實(shí)數(shù)m,使得f(﹣m),f(1)、f(m+2)成等差數(shù)列,則過坐標(biāo)原點(diǎn)作曲線y=f(x)的切線可以作(
A.3條
B.2條
C.1條
D.0條

【答案】B
【解析】解:至少存在兩個(gè)實(shí)數(shù)m,使得f(﹣m),f(1)、f(m+2)成等差數(shù)列, 可得f(﹣m)+f(2+m)=2f(1)=2(a+4),
即有f(x)的圖象關(guān)于點(diǎn)(1,a+4)對(duì)稱,
由f(x)的導(dǎo)數(shù)為f′(x)=3ax2+6x,
f″(x)=6ax+6,由 f″(x)=0,可得x=﹣
由f(﹣ +x)+f(﹣ ﹣x)為常數(shù),
可得﹣ =1,解得a=﹣1,
即有f(x)=﹣x3+3x2+1,f′(x)=﹣3x2+6x,
設(shè)切點(diǎn)為(t,﹣t3+3t2+1),
可得切線的斜率為﹣3t2+6t= ,
化為2t3﹣3t2+1=0,
設(shè)g(t)=2t3﹣3t2+1,g′(t)=6t2﹣6t,
當(dāng)0<t<1時(shí),g′(t)<0,g(t)遞減;當(dāng)t>1或t<0時(shí),g′(t)>0,g(t)遞增.
可得g(t)在t=0處取得極大值,且為1>0;在t=1處取得極小值,且為0.
可知2t3﹣3t2+1=0有兩解,
即過坐標(biāo)原點(diǎn)作曲線y=f(x)的切線可以作2條.
故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正四面體P﹣ABC中,點(diǎn)M是棱PC的中點(diǎn),點(diǎn)N是線段AB上一動(dòng)點(diǎn),且 ,設(shè)異面直線 NM 與 AC 所成角為α,當(dāng) 時(shí),則cosα的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知單位圓x2+y2=1與x軸正半軸交于點(diǎn)P,當(dāng)圓上一動(dòng)點(diǎn)Q從P出發(fā)沿逆時(shí)針方向旋轉(zhuǎn)一周回到P點(diǎn)后停止運(yùn)動(dòng)設(shè)OQ掃過的扇形對(duì)應(yīng)的圓心角為xrad,當(dāng)0<x<2π時(shí),設(shè)圓心O到直線PQ的距離為y,y與x的函數(shù)關(guān)系式y(tǒng)=f(x)是如圖所示的程序框圖中的①②兩個(gè)關(guān)系式

(Ⅰ)寫出程序框圖中①②處的函數(shù)關(guān)系式;

(Ⅱ)若輸出的y值為2,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合M={x|x<2},集合N={x|0<x<1},則下列關(guān)系中正確的是(
A.M∪N=R
B.M∪RN=R
C.N∪RM=R
D.M∩N=M

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法:
①分類變量A與B的隨機(jī)變量K2越大,說明“A與B有關(guān)系”的可信度越大.
②以模型y=cekx去擬合一組數(shù)據(jù)時(shí),為了求出回歸方程,設(shè)z=lny,將其變換后得到線性方程z=0.3x+4,則c,k的值分別是e4和0.3.
③根據(jù)具有線性相關(guān)關(guān)系的兩個(gè)變量的統(tǒng)計(jì)數(shù)據(jù)所得的回歸直線方程為y=a+bx中,b=1, =1, =3,
則a=1.正確的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,邊a、b、c分別是角A、B、C的對(duì)邊,且滿足bcosC=(3a-c)cosB

(1)求cosB

(2)若△ABC的面積為4,b=4,求△ABC的周長(zhǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=alnx+ ,a∈R.
(1)若f(x)的最小值為0,求實(shí)數(shù)a的值;
(2)證明:當(dāng)a=2時(shí),不等式f(x)≥ ﹣e1x恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某服裝批發(fā)市場(chǎng)1-5月份的服裝銷售量與利潤的統(tǒng)計(jì)數(shù)據(jù)如下表:

月份

1

2

3

4

5

銷售量 (萬件)

3

6

4

7

8

利潤 (萬元)

19

34

26

41

46

1)從這五個(gè)月的利潤中任選2個(gè),分別記為 ,求事件, 均不小于30”的概率;

2)已知銷售量與利潤大致滿足線性相關(guān)關(guān)系,請(qǐng)根據(jù)前4個(gè)月的數(shù)據(jù),求出關(guān)于的線性回歸方程

3)若由線性回歸方程得到的利潤的估計(jì)數(shù)據(jù)與真實(shí)數(shù)據(jù)的誤差不超過2萬元,則認(rèn)為得到的利潤的估計(jì)數(shù)據(jù)是理想的請(qǐng)用表格中第5個(gè)月的數(shù)據(jù)檢驗(yàn)由(2)中回歸方程所得的第5個(gè)月的利潤的估計(jì)數(shù)據(jù)是否理想參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

(1)判斷并證明函數(shù)的奇偶性;

(2)判斷并證明函數(shù)上的單調(diào)性;

(3)是否存在這樣的負(fù)實(shí)數(shù),使對(duì)一切恒成立,若存在,試求出取值的集合;若不存在,說明理由

查看答案和解析>>

同步練習(xí)冊(cè)答案