【題目】某城市出租車起步價為10元,最長可租乘3km(3km),以后每1km1.6元(不足1km,按1km計費),若出租車行駛在不需等待的公路上,則出租車的費用y()與行駛的里程xkm)之間的函數(shù)圖象大致為(

A. B. C. D.

【答案】C

【解析】

本題考查函數(shù)圖象,由實際問題抽象出函數(shù)圖象、理解實際問題的變化與函數(shù)圖象變化的對應是解題的關鍵,本題采取了將實際問題的函數(shù)模型求出,再尋求函數(shù)圖象的方法,理解本題中計費的方式是解題的難點。

出租車起步價為6元(起步價內行駛的里程是3km),0,3】對應的值都是6以后每1km價為1.6元,34】都應該對應7.6,答案為C

解決該試題的關鍵是由函數(shù)解析式判斷出函數(shù)圖象形狀,對照四個選項找出正確選項即可。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知定義域為的函數(shù)(常數(shù),為自然對數(shù)的底數(shù)).

(Ⅰ)求函數(shù)的單調區(qū)間;

(Ⅱ)若恒成立,求實數(shù)的最大整數(shù)值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,已知
(1)求證:tanB=3tanA;
(2)若cosC= ,求A的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知各項均為正數(shù)的兩個數(shù)列{an}和{bn}滿足:an+1= ,n∈N* ,
(1)設bn+1=1+ ,n∈N*,求證:數(shù)列{ }是等差數(shù)列;
(2)設bn+1= ,n∈N*,且{an}是等比數(shù)列,求a1和b1的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關關系,根據(jù)一組樣本數(shù)據(jù)(xi , yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為 =0.85x﹣85.71,則下列結論中不正確的是( )
A.y與x具有正的線性相關關系
B.回歸直線過樣本點的中心( ,
C.若該大學某女生身高增加1cm,則其體重約增加0.85kg
D.若該大學某女生身高為170cm,則可斷定其體重必為58.79kg

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=sin(ωx+φ)的導函數(shù)y=f′(x)的部分圖象如圖所示,其中,P為圖象與y軸的交點,A,C為圖象與x軸的兩個交點,B為圖象的最低點.
(1)若φ= ,點P的坐標為(0, ),則ω=;
(2)若在曲線段 與x軸所圍成的區(qū)域內隨機取一點,則該點在△ABC內的概率為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,底面,,,分別為的中點,為側棱上的動點

(Ⅰ)求證:平面平面

(Ⅱ)若為線段的中點,求證:平面

(Ⅲ)試判斷直線與平面是否能夠垂直。若能垂直,求的值;若不能垂直,請說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}前三項的和為﹣3,前三項的積為8.
(1)求等差數(shù)列{an}的通項公式;
(2)若a2 , a3 , a1成等比數(shù)列,求數(shù)列{|an|}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高二理(1)班學習興趣小組為了調查學生喜歡數(shù)學課的人數(shù)比例,設計了如下調查方法:

(1)在本校中隨機抽取100名學生,并編號1,2,3,…,100;

(2)在箱內放置了兩個黃球和三個紅球,讓抽取到的100名學生分別從箱中隨機摸出一球,記住其顏色并放回;

(3)請下列兩類學生站出來,一是摸到黃球且編號數(shù)為奇數(shù)的學生,二是摸到紅球且不喜歡數(shù)學課的學生。

若共有32名學生站出來,那么請用統(tǒng)計的知識估計該校學生中喜歡數(shù)學課的人數(shù)比例大約是( )

A. 80%B. 85%C. 90%D. 92%

查看答案和解析>>

同步練習冊答案