【題目】已知函數(shù)f(x)=x2+m與函數(shù) 的圖象上至少存在一對(duì)關(guān)于x軸對(duì)稱的點(diǎn),則實(shí)數(shù)m的取值范圍是(
A.
B.
C.
D.[2﹣ln2,2]

【答案】D
【解析】解:由已知,得到方程x2+m=ln +3xm=﹣lnx+3x﹣x2在[ ,2]上有解. 設(shè)f(x)=﹣lnx+3x﹣x2 ,
求導(dǎo)得:f′(x)=﹣ +3﹣2x=﹣ =﹣ ,
≤x≤2,
令f′(x)=0,解得x= 或x=1,
當(dāng)f′(x)>0時(shí), <x<1函數(shù)單調(diào)遞增,
當(dāng)f′(x)<0時(shí),1<x<2函數(shù)單調(diào)減,
∴在x=1有唯一的極值點(diǎn),
∵f( )=ln2+ ,f(2)=﹣ln2+2,f(x)極大值=f(1)=2,且知f(2)<f( ),
故方程m=﹣lnx+3x﹣x2在[ ,2]上有解等價(jià)于2﹣ln2≤m≤2.
從而m的取值范圍為[2﹣ln2,2].
故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)招聘中,依次進(jìn)行A科、B科考試,當(dāng)A科合格時(shí),才可考B科,且兩科均有一次補(bǔ)考機(jī)會(huì),兩科都合格方通過(guò).甲參加招聘,已知他每次考A科合格的概率均為 ,每次考B科合格的概率均為 .假設(shè)他不放棄每次考試機(jī)會(huì),且每次考試互不影響.
(I)求甲恰好3次考試通過(guò)的概率;
(II)記甲參加考試的次數(shù)為ξ,求ξ的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某單位為綠化環(huán)境,移栽了甲、乙兩種大樹(shù)各2株.設(shè)甲、乙兩種大樹(shù)移栽的成活率分別為 ,且各株大樹(shù)是否成活互不影響.求移栽的4株大樹(shù)中:
(1)兩種大樹(shù)各成活1株的概率;
(2)成活的株數(shù)ξ的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系 中,直線 的參數(shù)方程為 為參數(shù)),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,圓 的極坐標(biāo)方程為 .
(1)寫(xiě)出直線 的普通方程及圓 的直角坐標(biāo)方程;
(2)點(diǎn) 是直線 上的點(diǎn),求點(diǎn) 的坐標(biāo),使 到圓心 的距離最小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知不等式|x+3|﹣2x﹣1<0的解集為(x0 , +∞)
(Ⅰ)求x0的值;
(Ⅱ)若函數(shù)f(x)=|x﹣m|+|x+ |﹣x0(m>0)有零點(diǎn),求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知單調(diào)遞增的等比數(shù)列滿足,且的等差中項(xiàng).

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)若,對(duì)任意正數(shù)數(shù), 恒成立,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某漁船在航行中不幸遇險(xiǎn),發(fā)出呼叫信號(hào),我海軍艦艇在處獲悉后,立即測(cè)出該漁船在方位角(從指北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的水平角)為,距離為15海里的處,并測(cè)得漁船正沿方位角為的方向,以15海里/小時(shí)的速度向小島靠攏,我海軍艦艇立即以海里/小時(shí)的速度前去營(yíng)救,求艦艇靠近漁船所需的最少時(shí)間和艦艇的航向.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某機(jī)構(gòu)為了解某市民用電情況,抽查了該市100戶居民月均用電量(單位:分組的頻率分布直方圖如圖所示.

(1)求樣本中月均用電量為的用戶數(shù)量;

(2)估計(jì)月均用電量的中位數(shù);

(3)在月均用電量為的四組用戶中,用分層抽樣的方法抽取22戶居民,則月均用電量為的用戶中應(yīng)該抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè) 是定義在 上的奇函數(shù),且對(duì)任意實(shí)數(shù) ,恒有 .當(dāng) 時(shí), .
(1)求證: 是周期函數(shù);
(2)當(dāng) 時(shí),求 的解析式;
(3)計(jì)算 .

查看答案和解析>>

同步練習(xí)冊(cè)答案