精英家教網 > 高中數學 > 題目詳情

【題目】設函數fx)=x2-x+m,且f(log2a)=m,log2fa)=2,(a≠1).

(1)求a,m的值;

(2)求f(log2x)的最小值及對應的x的值.

【答案】(1);(2)當時,取得最小值.

【解析】

(1)由題意,可由f(log2a)=m,log2fa)=2,(a≠1)建立方程求出a,m的值.

(2)由(1)得,當fx)取得最小值,故可令求出函數取最小值時x的值.

(1)f(log2a)=log22a-log2a+m=m,

∴l(xiāng)og2a(log2a-1)=0∴a=1(舍)或a=2,

a=2,f(2)=2+m,

∴l(xiāng)og2fa)=log2f(2)=log2m+2)=2,

m=2,

綜上:a=2,m=2.

(2)

時,fx)取得最小值

時,f(log2x)取得最小值.

時,f(log2x)最小,

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設全集U=R,集合A={x|2x-1≥1},B={x|x2-4x-5<0}.

(Ⅰ)求AB,(UA)∪(UB);

(Ⅱ)設集合C={x|m+1<x<2m-1},若BC=C,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數fx)=lg(ax-bx)(a>1>b>0).

(Ⅰ)求fx)的定義域;

(Ⅱ)當x∈(1,+∞)時,fx)的值域為(0,+∞),且f(2)=lg2,求實數a、b的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某食品企業(yè)一個月內被消費者投訴的次數用表示.據統(tǒng)計,隨機變量的概率分布如下表所示.

0

1

2

3

0.1

0.3

(1)求的值和的數學期望;

(2)假設一月份與二月份被消費者投訴的次數互不影響,求該企業(yè)在這兩個月內共被消費者投訴2次的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知二次函數fx)對任意實數x滿足fx+2)=f(-x+2),又f(0)=3,f(2)=1.

(1)求函數fx)的解析式;

(2)若fx)在[0,m]上的最大值為3,最小值為1,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某工廠計劃出售一種產品,經銷人員并不是根據生產成本來確定這種產品的價格,而是通過對經營產品的零售商對于不同的價格情況下他們會進多少貨進行調查,通過調查確定了關系式P=-750x+15000,其中P為零售商進貨的數量(單位:件),x為零售商支付的每件產品價格(單位:元).現(xiàn)估計生產這種產品每件的材料和勞動生產費用為4元,并且工廠生產這種產品的總固定成本為7000元(固定成本是除材料和勞動費用以外的其他費用),為獲得最大利潤,工廠應對零售商每件收取多少元?并求此時的最大利潤.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數為奇函數,且x=-1處取得極大 2

1)求f(x)的解析式;

2)過點A(1,t) 可作函數f(x)圖像的三條切線,求實數t的取值范圍;

3)若對于任意的恒成立,求實數m取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ex ,g(x)=2ln(x+1)+ex
(1)x∈(﹣1,+∞)時,證明:f(x)>0;
(2)a>0,若g(x)≤ax+1,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數的單調減區(qū)間是。

(1)求的解析式;

(2)若對任意的,關于的不等式

時有解,求實數的取值范圍。

查看答案和解析>>

同步練習冊答案