已知函數(shù)是二次函數(shù),不等式的解集是,且在區(qū)間上的最大值為12.
(1)求的解析式;
(2)設函數(shù)上的最小值為,求的表達式.

(1);(2)①當,即時,;
②當時,;③當,即時,

解析試題分析:(1)由題意先設函數(shù)的解析式,再由條件解其中的未知數(shù),可得二次函數(shù)解析式;(2)由(1)知函數(shù)的解析式,可得函數(shù)的對稱軸為,再討論對稱軸是在區(qū)間上,還是在區(qū)間外,分別得的表達式.
試題解析:(1)是二次函數(shù),且的解集是可設  2分
在區(qū)間上的最大值是由已知,得      5分
.         6分
(2)由(1)知,開口向上,對稱軸為,      8分
①當,即時,上是單調遞減,
所以;      10分
②當時,上是單調遞減,所以;      12分
③當,即時,在對稱軸處取得最小值,所以.  14分
考點:1、二次函數(shù)的解析式的求法;2、二次函數(shù)的性質.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù),其中實數(shù)
(1)若,求函數(shù)的單調區(qū)間;
(2)當函數(shù)的圖象只有一個公共點且存在最小值時,記的最小值為,求的值域;
(3)若在區(qū)間內均為增函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)解不等式;
(2)對于任意的,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)定義域為的函數(shù)滿足,當時,
(1)當時,求的解析式;
(2)當x∈時,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知,函數(shù),,記.
(Ⅰ)求函數(shù)的定義域的表達式及其零點;
(Ⅱ)若關于的方程在區(qū)間內僅有一解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題12分)已知函數(shù))在區(qū)間上有最大值和最小值.設,       
(1)求、的值;
(2)若不等式上有解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知.
①若函數(shù)f(x)的值域為R,求實數(shù)m的取值范圍;
②若函數(shù)f(x)在區(qū)間(-∞,1-)上是增函數(shù),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某投資公司年初用萬元購置了一套生產設備并即刻生產產品,已知與生產產品相關的各種配套費用第一年需要支出萬元,第二年需要支出萬元,第三年需要支出萬元,……,每年都比上一年增加支出萬元,而每年的生產收入都為萬元.假設這套生產設備投入使用年,,生產成本等于生產設備購置費與這年生產產品相關的各種配套費用的和,生產總利潤等于這年的生產收入與生產成本的差. 請你根據(jù)這些信息解決下列問題:
(Ⅰ)若,求的值;
(Ⅱ)若干年后,該投資公司對這套生產設備有兩個處理方案:
方案一:當年平均生產利潤取得最大值時,以萬元的價格出售該套設備;
方案二:當生產總利潤取得最大值時,以萬元的價格出售該套設備. 你認為哪個方案更合算?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

“活水圍網”養(yǎng)魚技術具有養(yǎng)殖密度高、經濟效益好的特點.研究表明:“活水圍網”養(yǎng)魚時,某種魚在一定的條件下,每尾魚的平均生長速度(單位:千克/年)是養(yǎng)殖密度(單位:尾/立方米)的函數(shù).當不超過4(尾/立方米)時,的值為(千克/年);當時,的一次函數(shù);當達到(尾/立方米)時,因缺氧等原因,的值為(千克/年).
(1)當時,求函數(shù)的表達式;
(2)當養(yǎng)殖密度為多大時,魚的年生長量(單位:千克/立方米)可以達到最大,并求出最大值.

查看答案和解析>>

同步練習冊答案