【題目】某教研機構隨機抽取某校20個班級,調(diào)查各班關注漢字聽寫大賽的學生人數(shù),根據(jù)所得數(shù)據(jù)的莖葉圖,以組距為5將數(shù)據(jù)分組成時,所作的頻率分布直方圖如圖所示,則原始莖葉圖可能是( )
A. B.
C. D.
科目:高中數(shù)學 來源: 題型:
【題目】《九章算術》中,將底面為長方形且有一條側棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑.
如圖,在陽馬中,側棱底面,且, 為中點,點在上,且平面,連接, .
(Ⅰ)證明: 平面;
(Ⅱ)試判斷四面體是否為鱉臑,若是,寫出其每個面的直角(只需寫出結論);若不是,說明理由;
(Ⅲ)已知, ,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若存在兩個正實數(shù),使得等式成立(其中為自然對數(shù)的底數(shù)),則實數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【選做題】本題包括A、B、C、D四小題,請選定其中兩小題,并在相應的答題區(qū)域內(nèi)作答.若多做,則按作答的前兩小題評分.解答時應寫出文字說明、證明過程或演算步驟.
A.[選修4-1:幾何證明選講]
如圖, 分別與圓相切于點, , 經(jīng)過圓心,且,求證: .
B.[選修4-2:矩陣與變換]
在平面直角坐標系中,已知點, , , ,先將正方形繞原點逆時針旋轉,再將所得圖形的縱坐標壓縮為原來的一半、橫坐標不變,求連續(xù)兩次變換所對應的矩陣.
C.[選修4-4:坐標系與參數(shù)方程]
在平面直角坐標系中,已知曲線的參數(shù)方程為(為參數(shù)).現(xiàn)以為極點, 軸的正半軸為極軸,建立極坐標系,求曲線的極坐標方程.
D.[選修4-5:不等式選講]
已知為互不相等的正實數(shù),求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】河南多地遭遇跨年霾,很多學校調(diào)整元旦放假時間,提前放假讓學生們在家里躲霾,鄭州市根據(jù)《鄭州市人民政府辦公廳關于將重污染天氣黃色預警升級為紅色預警的通知》.自12月29日12時將黃色預警升級為紅色預警,12月30日0時啟動I級響應,明確要求:“幼兒園、中小學等教育機構停課,停課不停學”,學生和家長對停課這一舉措褒貶不一,有為了健康贊成的,有怕耽誤學習不贊成的.某調(diào)查機構為了了解公眾對該舉措的態(tài)度,隨機調(diào)查采訪了50人,將調(diào)查情況整理匯總成下表:
年齡(歲) | ||||||
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 4 | 6 | 9 | 6 | 3 | 4 |
(1)請補全被調(diào)查人員年齡的頻率分布直方圖;
(2)若從年齡在的被調(diào)查者中分別隨機選取一人進行追蹤調(diào)查,求這兩人都贊成“停課”這一舉措的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)與的圖象在點處有相同的切線.
(Ⅰ)若函數(shù)與的圖象有兩個交點,求實數(shù)的取值范圍;
(Ⅱ)若函數(shù)有兩個極值點, ,且,證明: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知 ,且方程 無實數(shù)根,下列命題:
(1)方程 一定有實數(shù)根;
(2)若 ,則不等式 對一切實數(shù) 都成立;
(3)若 ,則必存在實數(shù) ,使 ;
(4)若 ,則不等式 對一切實數(shù) 都成立.
其中,正確命題的序號是________________.(把你認為正確的命題的所有序號都填上)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】祖暅是南北朝時代的偉大科學家,5世紀末提出體積計算原理,即祖暅原理:“冪勢既同,則積不容異”.意思是:夾在兩個平行平面之間的兩個幾何體,被平行于這兩個平面的任何一個平面所截,如果截面面積都相等,那么這兩個幾何體的體積一定相等.現(xiàn)有以下四個幾何體:圖①是從圓柱中挖出一個圓錐所得的幾何體;圖②、圖③、圖④分別是圓錐、圓臺和半球,則滿足祖暅原理的兩個幾何體為( )
A. ①② B. ①③ C. ②④ D. ①④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com