【題目】函數(shù)f(x)=Asin(ωx+φ)滿足:f( +x)=﹣f( ﹣x),且f( +x)=f( ﹣x),則ω的一個(gè)可能取值是( )
A.2
B.3
C.4
D.5
【答案】B
【解析】解:函數(shù)f(x)=Asin(ωx+φ)滿足:f( +x)=﹣f( ﹣x),所以函數(shù)f(x)的圖象關(guān)于( ,0)對(duì)稱,
又f( +x)=f( ﹣x),
所以函數(shù)f(x)的圖象關(guān)于x= 對(duì)稱;
所以 = ﹣ = ,k∈Z,
所以T= ,
即 = ,
解得ω=3(2k﹣1),k∈Z;
當(dāng)k=1時(shí),ω=3,
所以ω的一個(gè)可能取值是3.
故選:B.
根據(jù)題意,得出函數(shù)f(x)的圖象關(guān)于( ,0)對(duì)稱,也關(guān)于x= 對(duì)稱;由此求出函數(shù)的周期T的可能取值,從而得出ω的可能取值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax2+ +5(常數(shù)a,b∈R)滿足f(1)+f(﹣1)=14.
(1)求出a的值,并就常數(shù)b的不同取值討論函數(shù)f(x)奇偶性;
(2)若f(x)在區(qū)間(﹣∞,﹣ )上單調(diào)遞減,求b的最小值;
(3)在(2)的條件下,當(dāng)b取最小值時(shí),證明:f(x)恰有一個(gè)零點(diǎn)q且存在遞增的正整數(shù)數(shù)列{an},使得 =q +q +q +…+q +…成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=x﹣1,則不等式f(x)<0的解集為( )
A.(﹣∞,﹣1)∪(0,1)
B.(﹣∞,﹣1)∪(1,+∞)
C.(﹣1,1)
D.(﹣1,0)∪(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為 (為參數(shù)).
(I)寫出直線的一般方程與曲線的直角坐標(biāo)方程,并判斷它們的位置關(guān)系;
(II)將曲線向左平移個(gè)單位長(zhǎng)度,向上平移個(gè)單位長(zhǎng)度,得到曲線,設(shè)曲線經(jīng)過伸縮變換得到曲線,設(shè)曲線上任一點(diǎn)為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線平面,直線平面,有以下四個(gè)命題:( )
①;②;③;④;
其中正確命題的序號(hào)為
A. ②④ B. ③④ C. ①③ D. ①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在上的偶函數(shù)滿足, 函數(shù)的圖像是的圖像的一部分. 若關(guān)于的方程有個(gè)不同的實(shí)數(shù)根, 則實(shí)數(shù)的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓E: =1(a>b>0)的焦距為2 ,其上下頂點(diǎn)分別為C1 , C2 , 點(diǎn)A(1,0),B(3,2),AC1⊥AC2 .
(1)求橢圓E的方程及離心率;
(2)點(diǎn)P的坐標(biāo)為(m,n)(m≠3),過點(diǎn)A任意作直線l與橢圓E相交于點(diǎn)M,N兩點(diǎn),設(shè)直線MB,BP,NB的斜率依次成等差數(shù)列,探究m,n之間是否滿足某種數(shù)量關(guān)系,若是,請(qǐng)給出m,n的關(guān)系式,并證明;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某幼兒園為訓(xùn)練孩子的數(shù)字運(yùn)算能力,在一個(gè)盒子里裝有標(biāo)號(hào)為1,2,3,4,5的卡片各2張,讓孩子從盒子里任取3張卡片,按卡片上最大數(shù)字的9倍計(jì)分,每張卡片被取出的可能性都相等,用X表示取出的3張卡片上的最大數(shù)字
(1)求取出的3張卡片上的數(shù)字互不相同的概率;
(2)求隨機(jī)變量x的分布列;
(3)若孩子取出的卡片的計(jì)分超過30分,就得到獎(jiǎng)勵(lì),求孩子得到獎(jiǎng)勵(lì)的概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】等差數(shù)列{an}的公差為d,關(guān)于x的不等式 x2+(a1﹣ )x+c≥0的解集是[0,22],則使得數(shù)列{an}的前n項(xiàng)和大于零的最大的正整數(shù)n的值是( )
A.11
B.12
C.13
D.不能確定
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com