【題目】【2017衡陽第二次聯(lián)考】已知四棱錐中,底面為矩形, 底面, , , 為上一點(diǎn), 為的中點(diǎn).
(1)在圖中作出平面與的交點(diǎn),并指出點(diǎn)所在位置(不要求給出理由);
(2)求平面將四棱錐分成上下兩部分的體積比.
【答案】(1)為中點(diǎn),(2)
【解析】試題分析:(1)由BC平行AD,可由線面平行判定定理得BC平行平面ADM ,再由線面平行性質(zhì)定理得BC平行MN,而M為PC中點(diǎn),因此為中點(diǎn),(2)上部分為四棱錐,下部分體積為大四棱錐減去上四棱錐:上部分四棱錐的高為AD,大四棱錐的高為PA,再根據(jù)棱錐體積公式得四棱錐的體積,而四棱錐的體積,進(jìn)而可得比值
試題解析:解:(1)為中點(diǎn),截面如圖所示.
(2)因?yàn)?/span>是的中位線, ,所以,且,
所以梯形的面積為,
點(diǎn)到截面的距離為到直線的距離,
所以四棱錐的體積,
而四棱錐的體積,
所以四棱錐被截下部分體積,
故上,下兩部分體積比.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)當(dāng)時(shí),求證:過點(diǎn)有三條直線與曲線相切;
(Ⅱ)當(dāng)時(shí), ,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從裝有個(gè)紅球和個(gè)黒球的口袋內(nèi)任取個(gè)球,那么互斥而不對立的兩個(gè)事件是( )
A.至少有一個(gè)黒球與都是黒球
B.至少有一個(gè)黑球與都是紅球
C.至少有一個(gè)黒球與至少有個(gè)紅球
D.恰有個(gè)黒球與恰有個(gè)黒球
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)總體中含有4個(gè)個(gè)體,從中抽取一個(gè)容量為2的樣本,說明為什么在抽取過程中每個(gè)個(gè)體被抽取的概率都相等
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017省息一中第七次適應(yīng)性考】已知函數(shù)(),且的導(dǎo)數(shù)為.
(Ⅰ)若是定義域內(nèi)的增函數(shù),求實(shí)數(shù)的取值范圍;
(Ⅱ)若方程有3個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2ax﹣2,g(x)=a(x﹣2a)(x+2﹣a),a∈R且a≠0.
(1)若{x|f(x)g(x)=0}={1,2},求實(shí)數(shù)a的值;
(2)若{x|f(x)<0或g(x)<0}=R,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中,在區(qū)間(0,+∞)上單調(diào)遞增的是( )
A.y=
B.y=1﹣x
C.y=x2﹣x
D.y=1﹣x2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(Ⅰ)若有唯一解,求實(shí)數(shù)的值;
(Ⅱ)證明:當(dāng)時(shí),
(附: )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是平行四邊形,側(cè)面是邊長為2的正三角形, , .
(Ⅰ)求證:平面平面;
(Ⅱ)設(shè)是棱上的點(diǎn),當(dāng)平面時(shí),求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com