【題目】(本題滿分15分)已知點(diǎn)是圓上任意一點(diǎn),過(guò)點(diǎn)軸的垂線,垂足為,點(diǎn)滿足 記點(diǎn)的軌跡為曲線

)求曲線的方程;

)設(shè),點(diǎn)在曲線上,且直線與直線的斜率之積為,求的面積的最大值

【答案】

【解析】

試題)求動(dòng)點(diǎn)軌跡方程的題目求解步驟是:建系,設(shè)所求點(diǎn),找到所求點(diǎn)的關(guān)系式并坐標(biāo)化,整理化簡(jiǎn),檢驗(yàn)結(jié)論()首先設(shè)出直線方程,與橢圓方程聯(lián)立,由直線與直線的斜率之積為找到M,N兩點(diǎn)坐標(biāo)滿足的關(guān)系式,進(jìn)而求出弦長(zhǎng)MN,找到三角形面積的函數(shù)表達(dá)式,求最值

試題解析:(I)設(shè),則

,故點(diǎn)的軌跡方程:6分

)(1)當(dāng)直線的斜率不存在時(shí),設(shè)

,,不合題意7分

(2)當(dāng)直線的斜率存在時(shí),設(shè),,

聯(lián)立方程,得

,9分

,

,代入上式,得

直線過(guò)定點(diǎn)11分

13分

,即

當(dāng)且僅當(dāng)時(shí),15分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),則關(guān)于x的方程有以下結(jié)論,其中正確的結(jié)論為(

A.當(dāng)時(shí),方程恒有實(shí)根

B.當(dāng)時(shí),方程內(nèi)有兩個(gè)不等實(shí)根

C.當(dāng)時(shí),方程內(nèi)最多有9個(gè)不等實(shí)根

D.若方程內(nèi)的實(shí)根的個(gè)數(shù)為偶數(shù),則所有實(shí)根之和為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方體中,已知點(diǎn)在直線上運(yùn)動(dòng),則下列四個(gè)命題中:①三棱錐的體積不變;②;③當(dāng)中點(diǎn)時(shí),二面角 的余弦值為;④若正方體的棱長(zhǎng)為2,則的最小值為;其中說(shuō)法正確的是____________(寫(xiě)出所有說(shuō)法正確的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】電視傳媒公司為了解某地區(qū)電視觀眾對(duì)某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖,將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”.

1)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料判斷是否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為"體育迷"與性別有關(guān).

性別

非體育迷

體育迷

總計(jì)

10

55

總計(jì)

下面的臨界值表供參考:

015

010

005

025

0010

0005

0001

k

2072

2706

3841

5024

6635

7879

10828

(參考公式:,其中)

2)將上述調(diào)查所得到的頻率視為概率,現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機(jī)抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為X,若每次抽取的結(jié)果是相互獨(dú)立的,求X的分布列期望和方差

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩定點(diǎn)F1(﹣1,0),F(xiàn)2(1,0),且|PF1||PF2|的等差中項(xiàng),則動(dòng)點(diǎn)P的軌跡是( 。

A. 橢圓 B. 雙曲線 C. 拋物線 D. 線段

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知函數(shù)是定義在R上的周期為2的奇函數(shù),時(shí),的值是____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)(a,bR)的導(dǎo)函數(shù)為,已知,的兩個(gè)不同的零點(diǎn).

(1)證明:

(2)當(dāng)b=0時(shí),若對(duì)任意x>0,不等式恒成立,求a的取值范圍;

(3)求關(guān)于x的方程的實(shí)根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),移動(dòng)支付已成為主要支付方式之一.為了解某校學(xué)生上個(gè)月、兩種移動(dòng)支付方式的使用情況,從全校學(xué)生中隨機(jī)抽取了人,發(fā)現(xiàn)樣本中、兩種支付方式都不使用的有人,樣本中僅使用和僅使用的學(xué)生的支付金額分布情況如下:

支付金額(元)

支付方式

大于

僅使用

僅使用

1)從樣本僅使用和僅使用的學(xué)生中各隨機(jī)抽取人,以表示這人中上個(gè)月支付金額大于元的人數(shù),求的分布列和數(shù)學(xué)期望;

2)已知上個(gè)月樣本學(xué)生的支付方式在本月沒(méi)有變化.現(xiàn)從樣本僅使用的學(xué)生中,隨機(jī)抽查人,發(fā)現(xiàn)他們本月的支付金額都大于.根據(jù)抽查結(jié)果,能否認(rèn)為樣本僅使用的學(xué)生中本月支付金額大于元的人數(shù)有變化?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在平面直角坐標(biāo)系中,直線l的參數(shù)方程為為參數(shù)),曲線的方程為.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

1)求直線l和曲線的極坐標(biāo)方程;

2)曲線分別交直線和曲線于點(diǎn),求的最大值及相應(yīng)的的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案