【題目】2017年郴州市兩會召開前夕,某網(wǎng)站推出兩會熱點大型調(diào)查,調(diào)查數(shù)據(jù)表明,民生問題時百姓最為關(guān)心的熱點,參與調(diào)查者中關(guān)注此問題的約占80%,現(xiàn)從參與者中隨機(jī)選出200人,并將這200人按年齡分組:第1組[15,25),第2組[25,35),第3組[35,45),第4組[45,55),第5組[55,65),得到的頻率分布直方圖如圖所示.
(1)求出頻率分布直方圖中的a值,并求出這200的平均年齡;
(2)現(xiàn)在要從年齡較小的第1,2,3組用分層抽樣的方法抽取12人,再從這12人中隨機(jī)抽取3人贈送禮品,求抽取的3人中至少有1人的年齡在第3組的概率;
(3)若要從所有參與調(diào)查的人(人數(shù)很多)中隨機(jī)選出3人,記關(guān)注民生問題的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

【答案】
(1)解:由頻率分布直方圖得:

(0.01+0.015+0.03+a+0.01)×10=1,

解得a=0.035


(2)解:分層抽樣的方法在第3組中應(yīng)抽取 =7人,

設(shè)事件“抽取3人中至少有1人年齡在第3組”為A,

為“抽取的3人中沒有1人年齡有第3組”,

則抽取的3人中至少有1人的年齡在第3組的概率:

P(A)=1﹣P( )=1﹣ =


(3)解:X的所有可能值為0,1,2,3,依題意得X~B(3, ),

且P(X=k)= ,k=0,1,2,3,

∴X的分布列為:

X

0

1

2

3

P

EX=np=3× =


【解析】(1)由頻率分布直方圖中小矩形的面積之和為1,能求出a.(2)分層抽樣的方法在第3組中應(yīng)抽取7人,設(shè)事件“抽取3人中至少有1人年齡在第3組”為A,則 為“抽取的3人中沒有1人年齡有第3組”,由此能求出抽取的3人中至少有1人的年齡在第3組的概率.(3)X的所有可能值為0,1,2,3,依題意得X~B(3, ),由此能求出X的分布列和數(shù)學(xué)期望.
【考點精析】本題主要考查了頻率分布直方圖和離散型隨機(jī)變量及其分布列的相關(guān)知識點,需要掌握頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息;在射擊、產(chǎn)品檢驗等例子中,對于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡稱分布列才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的一個頂點為,焦點在軸上,離心率為

(1)求橢圓的方程;

(2)若橢圓與直線相交于不同的兩點,當(dāng)時,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的離心率為,且過點.

(1)求橢圓的方程;

(2)設(shè)為橢圓上任一點, 為其右焦點,點滿足.

①證明: 為定值;

②設(shè)直線與橢圓有兩個不同的交點,與軸交于點.若成等差數(shù)列,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著共享單車的成功運營,更多的共享產(chǎn)品逐步走入大家的世界,共享汽車、共享籃球、共享充電寶等各種共享產(chǎn)品層出不窮.某公司隨即抽取人對共享產(chǎn)品是否對日常生活有益進(jìn)行了問卷調(diào)查,并對參與調(diào)查的人中的性別以及意見進(jìn)行了分類,得到的數(shù)據(jù)如下表所示:

總計

認(rèn)為共享產(chǎn)品對生活有益

認(rèn)為共享產(chǎn)品對生活無益

總計

(1)根據(jù)表中的數(shù)據(jù),能否在犯錯誤的概率不超過的前提下,認(rèn)為對共享產(chǎn)品的態(tài)度與性別有關(guān)系?

(2)現(xiàn)按照分層抽樣從認(rèn)為共享產(chǎn)品增多對生活無益的人員中隨機(jī)抽取人,再從人中隨機(jī)抽取人贈送超市購物券作為答謝,求恰有人是女性的概率.

參與公式:

臨界值表:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,修建一條公路需要一段環(huán)湖彎曲路段與兩條直道平滑連接(相切).已知環(huán)湖彎曲路段為某三次函數(shù)圖像的一部分,則該函數(shù)的解析式為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2﹣(2a﹣1)x﹣lnx.
(1)當(dāng)a>0時,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)a<0時,求函數(shù)f(x)在 上的最小值;
(3)記函數(shù)y=f(x)的圖象為曲線C,設(shè)點A(x1 , y1),B(x2 , y2)是曲線C上的不同兩點,點M為線段AB的中點,過點M作x軸的垂直交曲線C于點N,判斷曲線C在點N處的切線是否平行于直線AB,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓兩焦點分別為是橢圓在第一象限弧上一點,并滿足,過P作傾斜角互補(bǔ)的兩條直線分別交橢圓于兩點.

(1)求點坐標(biāo);

(2)求證:直線的斜率為定值;

(3)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={y|y= },B={x|y=lg(x﹣2x2)},則R(A∩B)=(
A.[0,
B.(﹣∞,0)∪[ ,+∞)
C.(0,
D.(﹣∞,0]∪[ ,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以原點O為極點,x軸為正半軸為極軸,建立極坐標(biāo)系.設(shè)曲線C: (α為參數(shù));直線l:ρ(cosθ+sinθ)=4.
(Ⅰ)寫出曲線C的普通方程和直線l的直角坐標(biāo)方程;
(Ⅱ)求曲線C上的點到直線l的最大距離.

查看答案和解析>>

同步練習(xí)冊答案