【題目】已知a∈R,函數(shù)f(x)=log2 +a).
(1)當a=5時,解不等式f(x)>0;
(2)若關于x的方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一個元素,求a的取值范圍.
(3)設a>0,若對任意t∈[ ,1],函數(shù)f(x)在區(qū)間[t,t+1]上的最大值與最小值的差不超過1,求a的取值范圍.

【答案】
(1)解:當a=5時,f(x)=log2 +5),

由f(x)>0;得log2 +5)>0,

+5>1,則 >﹣4,則 +4= >0,即x>0或x<﹣ ,

即不等式的解集為{x|x>0或x<﹣ }.


(2)由f(x)﹣log2[(a﹣4)x+2a﹣5]=0得log2 +a)﹣log2[(a﹣4)x+2a﹣5]=0.

即log2 +a)=log2[(a﹣4)x+2a﹣5],

+a=(a﹣4)x+2a﹣5>0,①

則(a﹣4)x2+(a﹣5)x﹣1=0,

即(x+1)[(a﹣4)x﹣1]=0,②,

當a=4時,方程②的解為x=﹣1,代入①,成立

當a=3時,方程②的解為x=﹣1,代入①,成立

當a≠4且a≠3時,方程②的解為x=﹣1或x= ,

若x=﹣1是方程①的解,則 +a=a﹣1>0,即a>1,

若x= 是方程①的解,則 +a=2a﹣4>0,即a>2,

則要使方程①有且僅有一個解,則1<a≤2.

綜上,若方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一個元素,則a的取值范圍是1<a≤2,或a=3或a=4.


(3)函數(shù)f(x)在區(qū)間[t,t+1]上單調(diào)遞減,

由題意得f(t)﹣f(t+1)≤1,

即log2 +a)﹣log2 +a)≤1,

+a≤2( +a),即a≥ =

設1﹣t=r,則0≤r≤ ,

= =

當r=0時, =0,

當0<r≤ 時, = ,

∵y=r+ 在(0, )上遞減,

∴r+ = ,

= =

∴實數(shù)a的取值范圍是a≥


【解析】1、當a=5時,由f(x)>0可得 , ,所以得到 ,即不等式可得。
2、由對數(shù)的運算性質(zhì)可得,整理可得到(a﹣4)x2+(a﹣5)x﹣1=0,對a的取值進行討論
當a=4時,方程②的解為x=﹣1,當a=3時,方程②的解為x=﹣1,當a≠4且a≠3時,方程②的解為 ,再檢驗,若x=﹣1是方程①的解,則 ,即a>1,若 是方程①的解,則 ,即a>2,那個上所述,要使方程①有且僅有一個解,則1<a≤2。把以上幾種情況并起來既得結果:a的取值范圍是1<a≤2,或a=3或a=4.
3、由函數(shù)單調(diào)性的定義可得 f(t)﹣f(t+1)≤1,根據(jù)對數(shù)的運算性質(zhì)可得到 計算出a的解析式。再由整體代換思想和基本不等式求出其取值范圍。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】橢圓 過點 ,離心率為 ,左、右焦點分別為F1 , F2 , 過F1的直線交橢圓于A,B兩點. (Ⅰ)求橢圓C的方程;
(Ⅱ)當△F2AB的面積為 時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為大力提倡“厲行節(jié)約,反對浪費”,某市通過隨機詢問100名性別不同的居民是否做到“光盤”行動,得到如下列聯(lián)表及附表: 經(jīng)計算:

做不到“光盤”行動

做到“光盤”行動

45

10

30

15

P(X2≥x0

0.10

0.05

0.025

x0

2.706

3.841

5.024

參照附表,得到的正確結論是(
A.在犯錯誤的概率不超過1%的前提下,認為“該市民能否做到‘光盤’行動與性別有關”
B.在犯錯誤的概率不超過1%的前提下,認為“該市民能否做到‘光盤’行動與性別無關”
C.有90%以上的把握認為“該市民能否做到‘光盤’行動與性別有關”
D.有90%以上的把握認為“該市民能否做到‘光盤’行動與性別無關”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若方程|x2﹣2x﹣1|﹣t=0有四個不同的實數(shù)根x1 , x2 , x3 , x4 , 且x1<x2<x3<x4 , 則2(x4﹣x1)+(x3﹣x2)的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+φ)其中ω>0,|φ|<
(1)若cos cosφ﹣sin sinφ=0.求φ的值;
(2)在(1)的條件下,若函數(shù)f(x)的圖象的相鄰兩條對稱軸之間的距離等于 ,求函數(shù)f(x)的解析式;并求最小正實數(shù)m,使得函數(shù)f(x)的圖象象左平移m個單位所對應的函數(shù)是偶函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩位同學期末考試的語文、數(shù)學、英語、物理成績?nèi)缜o葉圖所示,其中甲的一個數(shù)據(jù)記錄模糊,無法辨認,用a來表示,已知兩位同學期末考試四科的總分恰好相同,則甲同學四科成績的中位數(shù)為( )

A.92
B.92.5
C.93
D.93.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著醫(yī)院對看病掛號的改革,網(wǎng)上預約成為了當前最熱門的就診方式,這解決了看病期間病人插隊以及醫(yī)生先治療熟悉病人等諸多問題;某醫(yī)院研究人員對其所在地區(qū)年齡在10~60歲間的n位市民對網(wǎng)上預約掛號的了解情況作出調(diào)查,并將被調(diào)查的人員的年齡情況繪制成頻率分布直方圖,如右圖所示.
(1)若被調(diào)查的人員年齡在20~30歲間的市民有300人,求被調(diào)查人員的年齡在40歲以上(含40歲)的市民人數(shù);
(2)若按分層抽樣的方法從年齡在[20,30)以內(nèi)及[40,50)以內(nèi)的市民中隨機抽取10人,再從這10人中隨機抽取3人進行調(diào)研,記隨機抽的3人中,年齡在[40,50)以內(nèi)的人數(shù)為X,求X的分布列以及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,已知正方體ABCDA1B1C1D1的棱長為a , 過點B1B1EBD1于點E , 求A、E兩點之間的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,橢圓長軸端點為A,B,O為橢圓中心,F(xiàn)為橢圓的右焦點,且 ,
(1)求橢圓的標準方程;
(2)記橢圓的上頂點為M,直線l交橢圓于P,Q兩點,問:是否存在直線l,使點F恰為△PQM的垂心?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案