知橢圓的一個(gè)頂點(diǎn)為A(0,-1),焦點(diǎn)在x軸上,且右焦點(diǎn)到直線x-y+2
2
=0的距離為3,試求橢圓方程.
分析:根據(jù)右焦點(diǎn)到直線x-y+2
2
=0的距離為3,利用點(diǎn)到直線的距離公式求出c,再由橢圓的一個(gè)頂點(diǎn)為A(0,-1),求出b,從而得到橢圓方程.
解答:解:設(shè)右焦點(diǎn)F(c,0),(c>0),
|c+2
2
|
2
=3
,∴c=
2

∵橢圓的一個(gè)頂點(diǎn)為A(0,-1),
∴b=1,a2=3,
∴橢圓方程是
x2
3
+y2=1
點(diǎn)評(píng):本題考查橢圓的性質(zhì)和應(yīng)用,解題時(shí)要注意點(diǎn)到直線的距離公式的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的一個(gè)頂點(diǎn)為A(0,-1),焦點(diǎn)在x軸上.若右焦點(diǎn)到直線x-y+2
2
=0的距離為3.
(1)求橢圓的方程;
(2)設(shè)橢圓與直線y=kx+m(k≠0)相交于不同的兩點(diǎn)M、N.當(dāng)|AM|=|AN|時(shí),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的一個(gè)頂點(diǎn)為A(0,-1),焦點(diǎn)在x軸上,其右焦點(diǎn)到直線x-y+2
2
=0的距離為3.
(1)求橢圓的方程;
(2)直線y=
3
3
x+1與橢圓交于P、N兩點(diǎn),求|PN|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的一個(gè)頂點(diǎn)為A(0,-1),焦點(diǎn)在x軸上,離心率為
6
3

(1)求橢圓的方程;
(2)設(shè)橢圓與直線y=kx+m(k≠0)相交于不同的兩點(diǎn)M、N,當(dāng)|AM|=|AN|時(shí),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的一個(gè)頂點(diǎn)為A(0,-1),焦點(diǎn)在x軸上,且右焦點(diǎn)到直線x-y+2
2
=0的距離為3,一條斜率為k(k≠0)的直線l與該橢圓交于不同的兩點(diǎn)M、N,且滿足|
AM
|=|
AN
|
,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案