【題目】已知圓心為C的圓:(x﹣a)2+(y﹣b)2=8(a,b為正整數(shù))過點A(0,1),且與直線y﹣3﹣2 =0相切.
(1)求圓C的方程;
(2)若過點M(4,﹣1)的直線l與圓C相交于E,F(xiàn)兩點,且 =0.求直線l的方程.

【答案】
(1)解:圓C為(x﹣a)2+(y﹣b)2=8(a,b)為正整數(shù),

∴圓C的半徑為2 ,圓心為(a,b)

圓C過點A(0,1)且與直線 相切,

,

∴圓C的方程為(x﹣2)2+(y﹣3)2=8


(2)解:直線l與圓C相交于E,F(xiàn)兩點,且 =0

∴CE⊥CF,即△CEF為等腰直角三角形

圓C的半徑為2 ,

∴圓心C到直線l的距離為2,

∴當直線l的斜率不存在時,即直線l為x=4,很顯然滿足題意要求,

∴當直線l的斜率存在時,設直線l為:y=k(x﹣4)﹣1,

,即 即直線l為 由上綜合可知,

直線l為x=4或


【解析】(1)根據(jù)直線和圓相切的關系求出圓的半徑,即可求圓C的方程;(2)將直線和圓聯(lián)立,根據(jù)條件∠ECF=90°,根據(jù)點到直線啥單位距離即可得到結論.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】假定小麥基本苗數(shù)x與成熟期有效穗y之間存在相關關系,今測得5組數(shù)據(jù)如下:

x

15.0

25.58

30.0

36.6

44.4

y

39.4

42.9

42.9

43.1

49.2

(1)x為解釋變量,y為預報變量,作出散點圖;

(2)yx之間的線性回歸方程,對于基本苗數(shù)56.7預報其有效穗;

(3)計算各組殘差,并計算殘差平方和;

(4)R2,并說明殘差變量對有效穗的影響占百分之幾.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(I)若,求曲線在點處的切線的方程;

(II)設函數(shù)有兩個極值點,其中,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線m、n與平面α、β,下列命題正確的是(
A.m⊥α,n∥β且α⊥β,則m⊥n
B.m⊥α,n⊥β且α⊥β,則m⊥n
C.α∩β=m,n⊥m且α⊥β,則n⊥α
D.m∥α,n∥β且α∥β,則m∥n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知{an}是各項均為正數(shù)的數(shù)列,{bn}是等差數(shù)列,且a1=b1=1,a5﹣3b2=7.2a +(2﹣an+1)an﹣an+1=0(n∈N*
(1)求{an}和{bn}的通項公式;
(2)設cn=anbn , n∈N* , 求數(shù)列{cn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點G是△ABC的重心,且AG⊥BG, + = ,則實數(shù)λ的值為(
A.
B.
C.3
D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用數(shù)字組成沒有重復數(shù)字的四位數(shù)

可組成多少個不同的四位數(shù)?

可組成多少個不同的四位偶數(shù)?

中的四位數(shù)按從小到大的順序排成一數(shù)列,問第項是什么?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平面α∥平面β,P是α,β外一點,過點P的直線m與α,β分別交于點A,C,過點P的直線n與α,β分別交于點B,D,且PA=6,AC=9,PD=8,則BD的長為( 。
A.
B.
C.或24
D.或12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中, , 兩點的坐標分別為, ,動點滿足:直線與直線的斜率之積為

(Ⅰ)求動點的軌跡的方程;

(Ⅱ)過點作兩條互相垂直的直線 分別交曲線 兩點,設的斜率為),的面積為,求的取值范圍.

查看答案和解析>>

同步練習冊答案