【題目】設函數f(x)=|x﹣a|,a∈R. (Ⅰ)當a=2時,解不等式:f(x)≥6﹣|2x﹣5|;
(Ⅱ)若關于x的不等式f(x)≤4的解集為[﹣1,7],且兩正數s和t滿足2s+t=a,求證: .
【答案】解:(Ⅰ)當a=2時,不等式:f(x)≥6﹣|2x﹣5|,可化為|x﹣2|+|2x﹣5|≥6. ① x≥2.5時,不等式可化為x﹣2+2x﹣5≥6,∴x≥ ;
②2≤x<2.5,不等式可化為x﹣2+5﹣2x≥6,∴x∈;
③x<2,不等式可化為2﹣x+5﹣2x≥6,∴x≤ ,
綜上所述,不等式的解集為(﹣ ] ;
(Ⅱ)證明:不等式f(x)≤4的解集為[a﹣4,a+4]=[﹣1,7],∴a=3,
∴ = ( )(2s+t)= (10+ + )≥6,當且僅當s= ,t=2時取等號
【解析】(Ⅰ)利用絕對值的意義表示成分段函數形式,解不等式即可.(2)根據不等式的解集求出a=3,利用1的代換結合基本不等式進行證明即可.
【考點精析】根據題目的已知條件,利用絕對值不等式的解法的相關知識可以得到問題的答案,需要掌握含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關鍵是去掉絕對值的符號.
科目:高中數學 來源: 題型:
【題目】如圖,設D是圖中邊長分別為1和2的矩形區(qū)域,E是D內位于函數y= (x>0)圖象下方的區(qū)域(陰影部分),從D內隨機取一個點M,則點M取自E內的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義在R上的奇函數f(x)滿足f(x﹣4)=﹣f(x),且在區(qū)間[0,2]上是增函數,若方程f(x)=m(m>0)在區(qū)間[﹣8,8]上有四個不同的根x1 , x2 , x3 , x4 , 則x1+x2+x3+x4= .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,橢圓 的左焦點為F1 , 右焦點為F2 , 過F1的直線交橢圓于A,B兩點,△ABF2的周長為8,且△AF1F2面積最大時,△AF1F2為正三角形.
(1)求橢圓E的方程;
(2)設動直線l:y=kx+m與橢圓E有且只有一個公共點P,且與直線x=4相交于點Q.試探究:①以PQ為直徑的圓與x軸的位置關系? ②在坐標平面內是否存在定點M,使得以PQ為直徑的圓恒過點M?若存在,求出M的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在棱長為2的正方體ABCD﹣A1B1C1D1中,P為底面正方形ABCD內一個動點,Q為棱AA1上的一個動點,若|PQ|=2,則PQ的中點M的軌跡所形成圖形的面積是( )
A.
B.
C.3
D.4π
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一組數據如表:
x | 1 | 2 | 3 | 4 | 5 |
y | 1.3 | 1.9 | 2.5 | 2.7 | 3.6 |
(1)畫出散點圖;
(2)根據下面提供的參考公式,求出回歸直線方程,并估計當x=8時,y的值.
(參考公式: = = , = ﹣ )
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知中心在原點的橢圓與雙曲線有公共焦點,左、右焦點分別為F1、F2 , 且兩條曲線在第一象限的交點為P,△PF1F2是以PF1為底邊的等腰三角形.若|PF1|=10,橢圓與雙曲線的離心率分別為e1、e2 , 則e1e2+1的取值范圍為( )
A.(1,+∞)
B.( ,+∞)
C.( ,+∞)
D.( ,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個化肥廠生產甲、乙兩種混合肥料,生產1車皮甲種肥料的主要原料是磷酸鹽4噸,硝酸鹽18噸;生產1車皮乙種肥料需要的主要原料是磷酸鹽1噸,硝酸鹽15噸.現庫存磷酸鹽10噸,硝酸鹽66噸,在此基礎上生產這兩種混合肥料.如果生產1車皮甲種肥料產生的利潤為12 000元,生產1車皮乙種肥料產生的利潤為7 000元,那么可產生的最大利潤是( )
A.29 000元
B.31 000元
C.38 000元
D.45 000元
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com