(2013•梅州一模)下列函數(shù)中,在(0,+∞)上單調(diào)遞增的偶函數(shù)是(  )
分析:根據(jù)基本初等函數(shù)的單調(diào)性及單調(diào)性,逐一分析答案四個(gè)函數(shù)在(0,+∞)上的單調(diào)性和奇偶性,逐一比照后可得答案.
解答:解:y=cosx是偶函數(shù),但在(0,+∞)上有增有減,故排除A;
y=x3在(0,+∞)上單調(diào)遞增,但為奇函數(shù),故排除B;
y=y=log
1
2
x2
是偶函數(shù),但在(0,+∞)上單調(diào)遞減,故排除C;
y=ex+e-x是偶函數(shù),由于y′=ex-e-x,在(0,+∞)上,y′>0,故其在(0,+∞)上單調(diào)遞增的;正確.
故選D.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)的奇偶性與單調(diào)性的綜合,熟練掌握各種基本初等函數(shù)的單調(diào)性和奇偶性是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•梅州一模)設(shè)f(x)與g(x)是定義在同一區(qū)間[a,b]上的兩個(gè)函數(shù),若函數(shù)y=f(x)-g(x)在x∈[a,b]上有兩個(gè)不同的零點(diǎn),則稱f(x)和g(x)在[a,b]上是“關(guān)聯(lián)函數(shù)”,區(qū)間[a,b]稱為“關(guān)聯(lián)區(qū)間”.若f(x)=x2-3x+4與g(x)=2x+m在[0,3]上是“關(guān)聯(lián)函數(shù)”,則m的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•梅州一模)設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在非零實(shí)數(shù)l使得對(duì)于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱f(x)為M上的l高調(diào)函數(shù).如果定義域?yàn)镽的函數(shù)f(x)是奇函數(shù),當(dāng)x≥0時(shí),f(x)=|x-a2|-a2,且f(x)為R上的8高調(diào)函數(shù),那么實(shí)數(shù)a的取值范圍是
[-
2
,
2
]
[-
2
,
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•梅州一模)設(shè)等比數(shù)列{an}的公比q=2,前n項(xiàng)和為Sn,則
S4
a2
=
15
2
15
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•梅州一模)已知雙曲線
x2
a2
-
y2
b2
 =1(a>b>0)
的兩條漸近線的夾角為
π
3
,則雙曲線的離心率為
2
3
3
2
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•梅州一模)某工廠在試驗(yàn)階段大量生產(chǎn)一種零件,這種零件有甲、乙兩項(xiàng)技術(shù)指標(biāo)需要檢測(cè),設(shè)各項(xiàng)技術(shù)指標(biāo)達(dá)標(biāo)與否互不影響,按質(zhì)量檢驗(yàn)規(guī)定:兩項(xiàng)技術(shù)指標(biāo)都達(dá)標(biāo)的零件為合格品,為估計(jì)各項(xiàng)技術(shù)的達(dá)標(biāo)概率,現(xiàn)從中抽取1000個(gè)零件進(jìn)行檢驗(yàn),發(fā)現(xiàn)兩項(xiàng)技術(shù)指標(biāo)都達(dá)標(biāo)的有600個(gè),而甲項(xiàng)技術(shù)指標(biāo)不達(dá)標(biāo)的有250個(gè).
(1)求一個(gè)零件經(jīng)過(guò)檢測(cè)不為合格品的概率及乙項(xiàng)技術(shù)指標(biāo)達(dá)標(biāo)的概率;
(2)任意抽取該零件3個(gè),求至少有一個(gè)合格品的概率;
(3)任意抽取該種零件4個(gè),設(shè)ξ表示其中合格品的個(gè)數(shù),求隨機(jī)變量ξ的分布列.

查看答案和解析>>

同步練習(xí)冊(cè)答案