【題目】如圖,菱形ABCD與正三角形BCE的邊長均為2,它們所在平面互相垂直,F(xiàn)D⊥平面ABCD,且

(1)若∠BCD=60°,求證:BC⊥EF;
(2)若∠CBA=60°,求直線AF與平面FBE所成角的正弦值.

【答案】
(1)證明:如圖,過點E作EH⊥BC于H,連接HD,∴EH=

∵平面ABCD⊥平面BCE,EH平面BCE,平面ABCD∩平面BCE=BC,

∴EH⊥平面ABCD.

又∵FD⊥平面ABCD,F(xiàn)D= ,∴FD∥EH,且FD=EH.

∴四邊形EHDF為平行四邊形,

∴EF∥HD,

在等邊三角形BCD中,BC⊥DH,則BC⊥EF


(2)解:連接HA,由(1),得H為BC中點,又∠CBA=60°,△ABC為等邊三角形,

∴HA⊥BC,分別以HB,HA,HE為x,y,z軸建立空間直角坐標系H﹣xyz.

則B(1,0,0),F(xiàn)(﹣2, , ),E(0,0, ),A(0, ,0),

=(﹣3, ), =(﹣1, ,0), =(﹣1,0, ), =(﹣2,0, ),

設(shè)平面EBF的法向量為 =(x,y,z),

令z=1,

=( ,2,1),∴直線AF與平面EBF所成角的正弦值為| |=


【解析】(1)過點E作EH⊥BC于H,連接HD,證明四邊形EHDF為平行四邊形,可得EF∥HD,即可證明BC⊥EF;(2)若∠CBA=60°,建立空間直角坐標系,求出平面EBF的法向量,即可求直線AF與平面FBE所成角的正弦值.
【考點精析】關(guān)于本題考查的空間中直線與直線之間的位置關(guān)系和空間角的異面直線所成的角,需要了解相交直線:同一平面內(nèi),有且只有一個公共點;平行直線:同一平面內(nèi),沒有公共點;異面直線: 不同在任何一個平面內(nèi),沒有公共點;已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,則才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>0,b>0)的離心率為 ,A(a,0),B(0,b),O(0,0),△OAB的面積為1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)P是橢圓C上一點,直線PA與y軸交于點M,直線PB與x軸交于點N.求證:|AN||BM|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)動點P在棱長為1的正方體ABCD﹣A1B1C1D1的對角線BD1上,記 .當∠APC為鈍角時,則λ的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項數(shù)列{an}的前n項和為Sn , 對任意n∈N* , 點(an , Sn)都在函數(shù) 的圖象上.
(1)求數(shù)列{an}的首項a1和通項公式an
(2)若數(shù)列{bn}滿足 ,求數(shù)列{bn}的前n項和Tn;
(3)已知數(shù)列{cn}滿足 .若對任意n∈N* , 存在 ,使得c1+c2+…+cn≤f(x)﹣a成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正方體ABCD﹣A1B1C1D1 , O是底ABCD對角線的交點.求證:
(1)C1O∥面AB1D1;
(2)面BDC1∥面AB1D1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在[(﹣2,0)∪(0,2)]上的奇函數(shù),當x>0,f(x)的圖象如圖所示,那么f(x)的值域是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某生態(tài)園將一塊三角形地的一角開辟為水果園,已知角, 的長度均大于200米,現(xiàn)在邊界處建圍墻,在處圍竹籬笆.

(1)若圍墻、總長度為200米,如何可使得三角形地塊面積最大?

(2)已知竹籬笆長為米, 段圍墻高1米, 段圍墻高2米,造價均為每平方米100元,求圍墻總造價的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,設(shè)向量 ,其中的兩個內(nèi)角.

(1)若,求證: 為直角;

2)若,求證: 為銳角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)A={﹣4,2a﹣1,a2},B={a﹣1,1﹣a,9},已知A∩B={9},求a的值.

查看答案和解析>>

同步練習(xí)冊答案