【題目】某公司生產(chǎn)某種產(chǎn)品,一條流水線年產(chǎn)量為件,該生產(chǎn)線分為兩段,流水線第一段生產(chǎn)的半成品的質(zhì)量指標(biāo)會影響第二段生產(chǎn)成品的等級,具體見下表:

第一段生產(chǎn)的半成品質(zhì)量指標(biāo)

第二段生產(chǎn)的成品為一等品概率

0.2

0.4

0.6

第二段生產(chǎn)的成品為二等品概率

0.3

0.3

0.3

第二段生產(chǎn)的成品為三等品概率

0.5

0.3

0.1

從第一道生產(chǎn)工序抽樣調(diào)查了件,得到頻率分布直方圖如圖:

若生產(chǎn)一件一等品、二等品、三等品的利潤分別是元、元、元.

(Ⅰ)以各組的中間值估計(jì)為該組半成品的質(zhì)量指標(biāo),估算流水線第一段生產(chǎn)的半成品質(zhì)量指標(biāo)的平均值;

(Ⅱ)將頻率估計(jì)為概率,試估算一條流水線一年能為該公司創(chuàng)造的利潤;

(Ⅲ)現(xiàn)在市面上有一種設(shè)備可以安裝到流水線第一段,價(jià)格是萬元,使用壽命是年,安裝這種設(shè)備后,流水線第一段半成品的質(zhì)量指標(biāo)服從正態(tài)分布,且不影響產(chǎn)量.請你幫該公司作出決策,是否要購買該設(shè)備?說明理由.

(參考數(shù)據(jù):,

【答案】(Ⅰ);(Ⅱ)萬元;(Ⅲ)見解析.

【解析】

(Ⅰ)首先根據(jù)頻率分布直方圖確定各組的頻率及中間值,再根據(jù)樣本平均數(shù)的計(jì)算公式計(jì)算得到平均數(shù);(Ⅱ)首先確定隨機(jī)變量的所有可能取值,再根據(jù)獨(dú)立事件的概率公式求出分布列,最后利用數(shù)學(xué)期望公式求的數(shù)學(xué)期望;(Ⅲ)首先根據(jù)正態(tài)分布的性質(zhì)確定好等,然后類似第二問求出隨機(jī)變量的分布列及數(shù)學(xué)期望,最后根據(jù)隨機(jī)變量的數(shù)學(xué)期望的大小作決策.

(Ⅰ)平均值為: .

(Ⅱ)由頻率直方圖,第一段生產(chǎn)半成品質(zhì)量指標(biāo) ,

,

設(shè)生產(chǎn)一件產(chǎn)品的利潤為元,則

,

,

所以生產(chǎn)一件成品的平均利潤是元,

所以一條流水線一年能為該公司帶來利潤的估計(jì)值是萬元.

(Ⅲ),

設(shè)引入該設(shè)備后生產(chǎn)一件成品利潤為元,則

,

,

所以引入該設(shè)備后生產(chǎn)一件成品平均利潤為

元,

所以引入該設(shè)備后一條流水線一年能為該公司帶來利潤的估計(jì)值是萬元,

增加收入萬元,

綜上,應(yīng)該引入該設(shè)備.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正四棱錐的底面邊長和高都為2.現(xiàn)從該棱錐的5個頂點(diǎn)中隨機(jī)選取3個點(diǎn)構(gòu)成三角形,設(shè)隨機(jī)變量表示所得三角形的面積.

(1)求概率的值;

(2)求隨機(jī)變量的概率分布及其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直四棱柱中,底面是矩形,交于點(diǎn).

(1)證明:平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,,,,,

(1)若的中點(diǎn),證明:平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬;將四個面都為直角三角形的三棱錐稱之為鱉臑。若三棱錐P-ABC為鱉臑,PA⊥面ABC,PA=AB=2,AC=4,三棱錐P-ABC的四個頂點(diǎn)都在球的球面上,則球0的表面積為( )

A. 8πB. 12πC. 20πD. 24π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】研究機(jī)構(gòu)對某校學(xué)生往返校時(shí)間的統(tǒng)計(jì)資料表明:該校學(xué)生居住地到學(xué)校的距離(單位:千米)和學(xué)生花費(fèi)在上學(xué)路上的時(shí)間(單位:分鐘)有如下的統(tǒng)計(jì)資料:

到學(xué)校的距離(千米)

1.8

2.6

3.1

4.3

5.5

6.1

花費(fèi)的時(shí)間(分鐘)

17.8

19.6

27.5

31.3

36.0

43.2

如果統(tǒng)計(jì)資料表明有線性相關(guān)關(guān)系,試求:

(1)判斷是否有很強(qiáng)的線性相關(guān)性?

(相關(guān)系數(shù)的絕對值大于0.75時(shí),認(rèn)為兩個變量有很強(qiáng)的線性相關(guān)性,精確到0.01)

(2)求線性回歸方程(精確到0.01);

(3)將分鐘的時(shí)間數(shù)據(jù)稱為美麗數(shù)據(jù),現(xiàn)從這6個時(shí)間數(shù)據(jù)中任取2個,求抽取的2個數(shù)據(jù)全部為美麗數(shù)據(jù)的概率.

參考數(shù)據(jù):,,,

,

參考公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于無窮數(shù)列,,若,,則稱的“收縮數(shù)列”.其中,分別表示中的最大數(shù)和最小數(shù).已知為無窮數(shù)列,其前項(xiàng)和為,數(shù)列的“收縮數(shù)列”.

(1)若,求的前項(xiàng)和;

(2)證明:的“收縮數(shù)列”仍是;

(3)若,,求所有滿足該條件的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù),),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)設(shè)是曲線上的一個動瞇,當(dāng)時(shí),求點(diǎn)到直線的距離的最小值;

(2)若曲線上所有的點(diǎn)都在直線的右下方,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,已知,D是邊AC上的一點(diǎn),將沿BD折疊,得到三棱錐,若該三棱錐的頂點(diǎn)A在底面BCD的射影M在線段BC上,設(shè),則x的取值范圍是(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案