已知函數(shù)=。

(1)當(dāng)時(shí),求函數(shù)的單調(diào)增區(qū)間;

(2)求函數(shù)在區(qū)間上的最小值;

(3)在(1)的條件下,設(shè)=+,

求證:   (),參考數(shù)據(jù):。(13分)

 

【答案】

(1)單調(diào)增區(qū)間是,

(2)時(shí),時(shí),==;時(shí),==.

(3)證明詳見解析.

【解析】

試題分析:(1)求f(x)的導(dǎo)函數(shù)f′(x),討論a的值使f′(x)>0時(shí)對(duì)應(yīng)f(x)單調(diào)增,

f′(x)<0時(shí),對(duì)應(yīng)f(x)單調(diào)減;

(2)結(jié)合(1),討論a的取值對(duì)應(yīng)f(x)在區(qū)間[1,e]內(nèi)的單調(diào)性,從而求得f(x)在區(qū)間[1,e]內(nèi)的最小值.

試題解析:(1)當(dāng)時(shí),=,得,故的單調(diào)增區(qū)間是。    3分

(2)=,==

=0得。

當(dāng)時(shí),,遞增,;        6分

當(dāng)時(shí),<0,遞減;,遞增,

==             7分

當(dāng)時(shí),,0,遞減,==…8分

(3)令=。遞減,

,,∴ ,

===   ()……13分

考點(diǎn):1.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;2.利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值.3.利用導(dǎo)數(shù)的性質(zhì)證明不等式.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x
-1
,則f(x)的最小值是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•自貢一模)已知函數(shù)f(x)=  
x+1
,  x
≤0,
log2x
,x>0
則函數(shù)y=f[f(x)]+1的零點(diǎn)個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(2x+1)的定義域?yàn)閇1,2],則函數(shù)f(4x+1)的定義域?yàn)椋ā 。?/div>

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•永州一模)已知函數(shù)f(x)=ln(1+x)-p
x

(1)若函數(shù)f(x)在定義域內(nèi)為減函數(shù),求實(shí)數(shù)p的取值范圍;
(2)如果數(shù)列{an}滿足a1=3,an+1=[1+
1
n2(n+1)2
]an+
1
4n
,試證明:當(dāng)n≥2時(shí),4≤an<4e
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•浦東新區(qū)一模)已知函數(shù)f(x)=
x2+1
-ax
,其中a>0.
(1)若2f(1)=f(-1),求a的值;
(2)當(dāng)a≥1時(shí),判斷函數(shù)f(x)在區(qū)間[0,+∞)上的單調(diào)性;
(3)若函數(shù)f(x)在區(qū)間[1,+∞)上是增函數(shù),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案