在銳角三角形ABC中,a,b,c分別是角A,B,C的對(duì)邊,且a=2bsinA.
(1)求∠B的大小;
(2)若a=3
3
,c=5
,求邊b的長(zhǎng).
分析:(1)利用正弦定理把已知a=2bsinA進(jìn)行轉(zhuǎn)化可得2sinA=4sinBsinA,從而可求sinB,由△ABC為銳角三角形可求B
(2)由已知a=3
3
,c=5
,B=30°,利用余弦定理可得b2=a2+c2-2accosB可求
解答:解:(1)a=2bsinA.
由正弦定理可得2sinA=4sinBsinA
∵sinA≠0∴sinB=
1
2

∵△ABC為銳角三角形∴B=30°
(2)由已知a=3
3
,c=5
,B=30°
由余弦定理可得b2=a2+c2-2accosB
=27+25-2×3
3
×5×
3
2
=7∴b=
7

精英家教網(wǎng)
點(diǎn)評(píng):本題主要考查了正弦定理與余弦定理的綜合運(yùn)用,而正弦定理與余弦定理及三角形的大邊對(duì)大角知識(shí)等綜合是解三角形常見(jiàn)的試題類(lèi)型,屬于基礎(chǔ)題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在銳角三角形ABC中,a,b,c分別為內(nèi)角A,B,C所對(duì)的邊,且滿(mǎn)足
3
a-2bsinA=0

(Ⅰ)求角B的大小;
(Ⅱ)若b=
7
,c=2,求
AB
AC
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在銳角三角形ABC中,a,b,c分別是角A、B、C的對(duì)邊,
p
=(a+c,b),
q
=(c-a,b-c)且
p
q

(1)求A的大;
(2)記f(B)=2sin2B+sin(2B+
π
6
)
,求f(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•南充一模)在銳角三角形ABC中,角A,B,C對(duì)邊a,b,c且a2+b2-
2
ab=c2,tanA-tanB=csc2A
①求證:2A-B=
π
2
;
②求三角形ABC三個(gè)角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:在銳角三角形ABC中,?A,B,使sinA<cosB;命題q:?x∈R,都有x2+x+1>0,給出下列結(jié)論:
①命題“p∧q”是真命題;           
②命題“¬p∨q”是真命題;
③命題“¬p∨¬q”是假命題;       
④命題“p∧¬q”是假命題;
其中正確結(jié)論的序號(hào)是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案