【題目】已知函數(shù),若在定義域內(nèi)存在,使得成立,則稱為函數(shù)的局部對稱點.
(1)若,證明:函數(shù)必有局部對稱點;
(2)若函數(shù)在區(qū)間內(nèi)有局部對稱點,求實數(shù)的取值范圍;
(3)若函數(shù)在上有局部對稱點,求實數(shù)的取值范圍.
【答案】(1)見解析;(2);(3)
【解析】
試題分析:(1)利用題中所給的定義,通過二次函數(shù)的判別式大于0,證明二次函數(shù)有局部對稱點;(2)利用方程有解,通過換元,轉(zhuǎn)化為打鉤函數(shù)有解問題,利用函數(shù)的圖象,確定實數(shù)c的取值范圍;(3)利用方程有解,通過換元,轉(zhuǎn)化為二次函數(shù)在給定區(qū)間有解,建立不等式組,通過解不等式組,求得實數(shù)的取值范圍.
試題解析:(1)由得=,代入得,
=,得到關(guān)于的方程=).
其中,由于且,所以恒成立,
所以函數(shù)=)必有局部對稱點.
(2)方程=在區(qū)間上有解,于是,
設(shè)),,,
其中,所以.
(3),由于,
所以=.
于是=(*)在上有解.
令),則,
所以方程(*)變?yōu)?/span>=在區(qū)間內(nèi)有解,
需滿足條件:.
即,,化簡得.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)四棱錐P-ABCD的底面不是平行四邊形,用平面去截此四棱錐,使得截面是平行四邊形,則這樣的平面( )
A.不存在
B.有且只有1個
C.恰好有4個
D.有無數(shù)多個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面圖形ABB1A1C1C如圖4所示,其中BB1C1C是矩形,BC=2,BB1=4,AB=AC= ,A1B1=A1C1= .現(xiàn)將該平面圖形分別沿BC和B1C1折疊,使△ABC與△A1B1C1所在平面都與平面BB1C1C垂直,再分別連接A2A,A2B,A2C,得到如圖2所示的空間圖形,對此空間圖形解答下列問題.
(Ⅰ)證明:AA1⊥BC;
(Ⅱ)求AA1的長;
(Ⅲ)求二面角A﹣BC﹣A1的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且橢圓上的一點與兩個焦點構(gòu)成的三角形周長為.
(1)求橢圓的方程;
(2)已知直線與橢圓相交于兩點.
①若線段中點的橫坐標(biāo)為,求的值;
②在軸上是否存在點,使為定值?若是,求點的坐標(biāo);若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記Sn為等比數(shù)列的前n項和,已知S2=2,S3=-6.
(1)求的通項公式;
(2)求Sn,并判斷Sn+1,Sn,Sn+2是否成等差數(shù)列。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個結(jié)論:
①命題“若a=0,則ab=0”的否命題是“若a=0,則ab≠0”;
②已知命題p:x∈R,x2+6x+11<0,則p:x∈R,x2+6x+11≥0;
③若命題“p”與命題“p或q”都是真命題,則命題q一定是真命題;
④命題“若0<a<1,則loga(a+1)<log
其中正確結(jié)論的序號是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個盒子內(nèi)裝有8張卡片,每張卡片上面寫著1個數(shù)字,這8個數(shù)字各不相同,且奇數(shù)有3個,偶數(shù)有5個.每張卡片被取出的概率相等.
(Ⅰ)如果從盒子中一次隨機取出2張卡片,并且將取出的2張卡片上的數(shù)字相加得到一個新數(shù),求所得新數(shù)是偶數(shù)的概率;
(Ⅱ)現(xiàn)從盒子中一次隨機取出1張卡片,每次取出的卡片都不放回盒子,若取出的卡片上寫著的數(shù)是偶數(shù)則停止取出卡片,否則繼續(xù)取出卡片.設(shè)取出了次才停止取出卡片,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,∠ACB=90°,2AC=AA1=BC=2.若二面角B1-DC-C1的大小為60°,則AD的長為( )
A. B. C. 2 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了對2016年某校中考成績進行分析,在60分以上的全體同學(xué)中隨機抽出8位,他們的數(shù)學(xué)分?jǐn)?shù)(已折算為百分制)從小到大排是60、65、70、75、80、85、90、95,物理分?jǐn)?shù)從小到大排是72、77、80、84、88、90、93、95. 參考公式:相關(guān)系數(shù) ,
回歸直線方程是: ,其中 ,
參考數(shù)據(jù): , , , .
(1)若規(guī)定85分以上為優(yōu)秀,求這8位同學(xué)中恰有3位同學(xué)的數(shù)學(xué)和物理分?jǐn)?shù)均為優(yōu)秀的概率;
(2)若這8位同學(xué)的數(shù)學(xué)、物理、化學(xué)分?jǐn)?shù)事實上對應(yīng)如下表:
學(xué)生編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
數(shù)學(xué)分?jǐn)?shù)x | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 |
物理分?jǐn)?shù)y | 72 | 77 | 80 | 84 | 88 | 90 | 93 | 95 |
化學(xué)分?jǐn)?shù)z | 67 | 72 | 76 | 80 | 84 | 87 | 90 | 92 |
①用變量y與x、z與x的相關(guān)系數(shù)說明物理與數(shù)學(xué)、化學(xué)與數(shù)學(xué)的相關(guān)程度;
②求y與x、z與x的線性回歸方程(系數(shù)精確到0.01),當(dāng)某同學(xué)的數(shù)學(xué)成績?yōu)?0分時,估計其物理、化學(xué)兩科的得分.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com