曲線
在點(0,1)處的切線方程為
▲ .
解:因為
由點斜式方程可得為
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
,
(其中
為自然對數(shù)的底數(shù),常數(shù)
).
(1)若對任意
,
恒成立,求正實數(shù)
的取值范圍;
(2)在(1)的條件下,當
取最大值時,試討論函數(shù)
在區(qū)間
上的單調性;
(3)求證:對任意的
,不等式
成立.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分14分)設函數(shù)
.
(Ⅰ)若
,
⑴求
的值;
⑵在
存在
,使得不等式
成立,求
c最小值。(參考數(shù)據(jù)
)
(Ⅱ)當
上是單調函數(shù),求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)f(x)=
,
為常數(shù)。
(I)當
=1時,求f(x)的單調區(qū)間;
(II)若函數(shù)f(x)在區(qū)間[1,2]上為單調函數(shù),求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設函數(shù)
f(
x)在定義域內可導,
y=
f (
x)的圖象如圖1所示,則導函數(shù)
的圖象可能為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設
(1)若
在
上存在單調遞增區(qū)間,求
的取值范圍;
(2)當a=1時,求
在
上的最值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
函數(shù)
的單調遞減區(qū)間是
。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
的圖象經(jīng)過原點,
若
在
取得極大值2。
(1)求函數(shù)
的解析式;
(2)若對任意的
,求
的最大值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
函數(shù)
,
的最大值為
查看答案和解析>>