【題目】橢圓規(guī)是用來畫橢圓的一種器械,它的構造如圖所示,在一個十字形的金屬板上有兩條互相垂直的導槽,在直尺上有兩個固定的滑塊AB,它們可分別在縱槽和橫槽中滑動,在直尺上的點M處用套管裝上鉛筆,使直尺轉(zhuǎn)動一周,則點M的軌跡C是一個橢圓,其中|MA|2,|MB|1,如圖,以兩條導槽的交點為原點O,橫槽所在直線為x軸,建立直角坐標系.

1)將以射線Bx為始邊,射線BM為終邊的角xBM記為φ0≤φ),用表示點M的坐標,并求出C的普通方程;

2)已知過C的左焦點F,且傾斜角為α0≤α)的直線l1C交于D,E兩點,過點F且垂直于l1的直線l2C交于G,H兩點.|GH|,依次成等差數(shù)列時,求直線l2的普通方程.

【答案】1,;(2

【解析】

1)用三角函數(shù)表示出點M的坐標,直接利用轉(zhuǎn)換關系把極坐標方程轉(zhuǎn)換為直角坐標方程;(2)設出直線l1的參數(shù)方程,與橢圓方程聯(lián)立利用直線參數(shù)的幾何意義求出、,根據(jù)題意有,列出方程求出直線l1的斜率即可求得直線l2的方程.

1)設Mx,y)依題意得:x2cosφ,ysinφ,

所以M2cosφ,sinφ),

由于cos2φ+sin2φ1,整理得.

2)由于直線l1的傾斜角為α),且l1l2,

所以直線l2的傾斜角為,依題意易知:F),

可設直線l1的方程為t為參數(shù)),

代入得到:,

易知,

設點D和點E對應的參數(shù)為t1t2,

所以.

,

由參數(shù)的幾何意義:,

GH對應的參數(shù)為t3t4,同理對于直線l2,將α換為,

所以,

由于,|GH|,依次成等差數(shù)列,

所以,則,解得,

所以,又,所以,

所以直線l2的斜率為,直線l2的直角坐標方程為x.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且.

(1)證明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC, ,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“團購”已經(jīng)滲透到我們每個人的生活,這離不開快遞行業(yè)的發(fā)展,下表是2013-2017年全國快遞業(yè)務量(x億件:精確到0.1)及其增長速度(y%)的數(shù)據(jù)

1)試計算2012年的快遞業(yè)務量;

2)分別將2013年,2014年,…,2017年記成年的序號t12,3,45;現(xiàn)已知yt具有線性相關關系,試建立y關于t的回歸直線方程;

3)根據(jù)(2)問中所建立的回歸直線方程,估算2019年的快遞業(yè)務量

附:回歸直線的斜率和截距地最小二乘法估計公式分別為:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著現(xiàn)代電子技術的迅猛發(fā)展,關于元件和系統(tǒng)可靠性的研究已發(fā)展成為一門新的學科——可靠性理論.在可靠性理論中,一個元件正常工作的概率稱為該元件的可靠性.元件組成系統(tǒng),系統(tǒng)正常工作的概率稱為該系統(tǒng)的可靠性.現(xiàn)有)種電子元件,每種2個,每個元件的可靠性均為).當某元件不能正常工作時,該元件在電路中將形成斷路.現(xiàn)要用這個元件組成一個電路系統(tǒng),有如下兩種連接方案可供選擇,當且僅當從AB的電路為通路狀態(tài)時,系統(tǒng)正常工作.

1)(i)分別寫出按方案①和方案②建立的電路系統(tǒng)的可靠性、(用表示);

ii)比較的大小,說明哪種連接方案更穩(wěn)定可靠;

2)設,,已知按方案②建立的電路系統(tǒng)可以正常工作,記此時系統(tǒng)中損壞的元件個數(shù)為,求隨機變量的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線與函數(shù))的圖象相交,將其中三個相鄰交點從左到右依次記為AB,C,且滿足有下列結論:

n的值可能為2

,且時,的圖象可能關于直線對稱

時,有且僅有一個實數(shù)ω,使得上單調(diào)遞增;

不等式恒成立

其中所有正確結論的編號為( )

A.③B.①②C.②④D.③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐中,底面是邊長為4的正方形,為正三角形,的中點,過的平面平行于平面,且平面與平面的交線為,與平面的交線為

1)在圖中作出四邊形(不必說出作法和理由);

2)若,求平面與平面形成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當時,求曲線的公切線方程:

2)若有兩個極值點,且,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,直角梯形中,,,,四邊形為矩形,,平面平面.

1)求證:平面;

2)求二面角的正弦值;

3)在線段上是否存在點,使得直線與平面所成角的正弦值為,若存在,求出線段的長,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年來,政府相關部門引導鄉(xiāng)村發(fā)展旅游的同時,鼓勵農(nóng)戶建設溫室大棚種植高品質(zhì)農(nóng)作物.為了解某農(nóng)作物的大棚種植面積對種植管理成本的影響,甲,乙兩同學一起收集6家農(nóng)戶的數(shù)據(jù),進行回歸分折,得到兩個回歸摸型:模型①:,模型②: ,對以上兩個回歸方程進行殘差分析,得到下表:

種植面積()

2

3

4

5

7

9

每畝種植管理成本(百元)

25

24

21

22

16

14

模型①

估計值

25.27

23.62

21.97

17.02

13.72

殘差

-0.27

0.38

-0.97

-1.02

0.28

模型②

26.84

20.17

18.83

17.31

16.46

-1.84

0.83

3.17

-1.31

-2.46

1)將以上表格補充完整,并根據(jù)殘差平方和判斷哪個模型擬合效果更好;

2)視殘差的絕對值超過1.5的數(shù)據(jù)視為異常數(shù)據(jù),針對(1)中擬合效果較好的模型,剔除異常數(shù)據(jù)后,重新求回歸方程.

附:,

查看答案和解析>>

同步練習冊答案