體積為1的直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=1,求直線AB1與平面BCC1B1所成角.
分析:根據(jù)體積先求出AA1=CC1的長,連接BC1,易證∠A1BC1是直線A1B與平面BB1C1C所成的角,在直角三角形A1BC1中求出此角即可.
解答:精英家教網(wǎng)解:由題意,可得體積V=CC1S△ABC=CC1
1
2
•AC•BC=
1
2
CC1=1
,
∴AA1=CC1=2.
連接BC1
∵A1C1⊥B1C1,A1C1⊥CC1,
∴A1C1⊥平面BB1C1C,
∴∠A1BC1是直線A1B與平面BB1C1C所成的角.BC1=
CC12+BC2
=
5

tan∠A1BC1=
A1C1
BC1
=
1
5
,
則∠A1BC1=arctan
5
5
;
即直線A1B與平面BB1C1C所成角的大小為arctan
5
5
點評:本題主要考查了直線與平面之間的位置關(guān)系,考查空間想象能力、運算能力和推理論證能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直三棱柱ABC-A1B1C1的各頂點都在球O的球面上,且AB=AC=1,BC=
3
,若球O的體積為
20
5
3
π
,則這個直三棱柱的體積等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•遼寧)如圖,直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=
2
,AA′=1,點M,N分別為A′B和B′C′的中點.
(Ⅰ)證明:MN∥平面A′ACC′;
(Ⅱ)求三棱錐A′-MNC的體積.
(椎體體積公式V=
1
3
Sh,其中S為地面面積,h為高)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖1,△ABC的三邊長分別為AC=6、AB=8、BC=10,O′為其內(nèi)心;取O′A、O′B、O′C的中點A′、B′、C′,并按虛線剪拼成一個直三棱柱ABC-A′B′C′(如圖2),上下底面的內(nèi)心分別為O′與O;
(Ⅰ)求直三棱柱ABC-A′B′C′的體積;
(Ⅱ)直三棱柱ABC-A′B′C′中,設(shè)線段OO'與平面AB′C交于點P,求二面角B-AP-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△A′B′C′是水平放置的△ABC的斜二測直觀圖,其中O′C′=O′A′=1,O′B′=
12
,以△ABC為底面構(gòu)造一個側(cè)棱等于2的直三棱柱ABC-A1B1C1(側(cè)棱垂直底面),則此三棱柱的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年浙江省杭州市重點高中高考命題比賽數(shù)學(xué)參賽試卷03(理科)(解析版) 題型:解答題

如圖1,△ABC的三邊長分別為AC=6、AB=8、BC=10,O′為其內(nèi)心;取O′A、O′B、O′C的中點A′、B′、C′,并按虛線剪拼成一個直三棱柱ABC-A′B′C′(如圖2),上下底面的內(nèi)心分別為O′與O;
(Ⅰ)求直三棱柱ABC-A′B′C′的體積;
(Ⅱ)直三棱柱ABC-A′B′C′中,設(shè)線段OO'與平面AB′C交于點P,求二面角B-AP-C的余弦值.

查看答案和解析>>

同步練習(xí)冊答案