【題目】已知?jiǎng)狱c(diǎn)滿足,記M的軌跡為曲線C,直線l)交曲線CP,Q兩點(diǎn),點(diǎn)P在第一象限,軸,垂足為E,連接QE并延長(zhǎng)交曲線C于點(diǎn)G.

(1)求曲線C的方程,并說(shuō)明曲線C是什么曲線;

(2)若,求的面積.

(3)求面積的最大值.

【答案】1,軌跡是以為焦點(diǎn)的橢圓

2

3

【解析】

(1)根據(jù),由兩點(diǎn)間的距離公式可看出,其表示動(dòng)點(diǎn)與兩定點(diǎn)、的距離之和為,且,可知其符合橢圓的定義,把相關(guān)量代入橢圓標(biāo)準(zhǔn)方程,即可求解;

(2)寫(xiě)出直線的方程與曲線的方程聯(lián)立,便可解出點(diǎn)坐標(biāo),進(jìn)而知道點(diǎn)的坐標(biāo),再求出直線的方程后,與曲線的方程聯(lián)立,可解出點(diǎn)的坐標(biāo),再代公式,即可求出面積;

(3)將直線的方程與曲線的方程聯(lián)立,解出點(diǎn)坐標(biāo),進(jìn)而得點(diǎn)的坐標(biāo),再求出直線的方程后,與曲線的方程聯(lián)立,可得點(diǎn)坐標(biāo),再根據(jù)點(diǎn)坐標(biāo),得直線的斜率,可驗(yàn)證,得是直角三角形,代兩點(diǎn)間的距離公式可求出,所以是一個(gè)關(guān)于直線的斜率的函數(shù),由函數(shù)求最值的方法,即可求解.

(1)由,可得點(diǎn)到點(diǎn)、的距離之和為4且,所以動(dòng)點(diǎn)的軌跡是以的橢圓,其中,,即,,所以曲線C的軌跡方程為,軌跡是以、的橢圓.

(2)根據(jù)題意得,與聯(lián)立

,解得

所以P點(diǎn)坐標(biāo)為Q點(diǎn)坐標(biāo)為

因?yàn)?/span>軸,垂足為E,所以E點(diǎn)坐標(biāo)為

所以直線QE方程為

聯(lián)立,可得,整理可得

所以G點(diǎn)坐標(biāo)為

(3)設(shè)直線PQ的斜率為k,則其方程為).由.

,則,,.

于是直線QG的斜率為,方程為.

——

設(shè),則是方程①的解,故.由此得.

從而直線PG的斜率為.

所以,即是直角三角形.

.

所以的面積.

設(shè),則由,當(dāng)且僅當(dāng)時(shí)取等號(hào).

因?yàn)?/span>單調(diào)遞減,所以當(dāng),即時(shí),S取得最大值,最大值為.

因此,面積的最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某海面上有、三個(gè)小島(面積大小忽略不計(jì)),島在島的北偏東方向距千米處,島在島的正東方向距20千米處.為坐標(biāo)原點(diǎn),的正東方向?yàn)?/span>軸的正方向,1千米為單位長(zhǎng)度,建立平面直角坐標(biāo)系.經(jīng)過(guò)、、三點(diǎn).

1)求圓的方程;

2)若圓區(qū)域內(nèi)有未知暗礁,現(xiàn)有一船D島的南偏西30°方向距40千米處,正沿著北偏東行駛,若不改變方向,試問(wèn)該船有沒(méi)有觸礁的危險(xiǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】教材曾有介紹:圓上的點(diǎn)處的切線方程為。我們將其結(jié)論推廣:橢圓上的點(diǎn)處的切線方程為,在解本題時(shí)可以直接應(yīng)用。已知,直線與橢圓有且只有一個(gè)公共點(diǎn).

(1)求的值;

(2)設(shè)為坐標(biāo)原點(diǎn),過(guò)橢圓上的兩點(diǎn)、分別作該橢圓的兩條切線、,且交于點(diǎn)。當(dāng)變化時(shí),求面積的最大值;

(3)在(2)的條件下,經(jīng)過(guò)點(diǎn)作直線與該橢圓交于、兩點(diǎn),在線段上存在點(diǎn),使成立,試問(wèn):點(diǎn)是否在直線上,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓的左、右焦點(diǎn)分別為,離心率為,過(guò)焦點(diǎn)且垂直于軸的直線被橢圓截得的線段長(zhǎng)為

(Ⅰ)求橢圓的方程;

(Ⅱ)點(diǎn)為橢圓上一動(dòng)點(diǎn),連接、,設(shè)的角平分線交橢圓的長(zhǎng)軸于點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 當(dāng)時(shí),的最小值等于____;若對(duì)于定義域內(nèi)的任意,恒成立,則實(shí)數(shù)的取值范圍是____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某調(diào)查機(jī)構(gòu)對(duì)全國(guó)互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、90后從事互聯(lián)網(wǎng)行業(yè)者崗位分布條形圖,則下列結(jié)論中不一定正確的是( ).

注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.

A. 互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上

B. 互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過(guò)總?cè)藬?shù)的20%

C. 互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營(yíng)崗位的人數(shù)90后比80前多

D. 互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某書(shū)店剛剛上市了《中國(guó)古代數(shù)學(xué)史》,銷(xiāo)售前該書(shū)店擬定了5種單價(jià)進(jìn)行試銷(xiāo),每種單價(jià)(元)試銷(xiāo)l天,得到如表單價(jià)(元)與銷(xiāo)量(冊(cè))數(shù)據(jù):

單價(jià)(元)

18

19

20

21

22

銷(xiāo)量(冊(cè))

61

56

50

48

45

(l)根據(jù)表中數(shù)據(jù),請(qǐng)建立關(guān)于的回歸直線方程:

(2)預(yù)計(jì)今后的銷(xiāo)售中,銷(xiāo)量(冊(cè))與單價(jià)(元)服從(l)中的回歸方程,已知每?jī)?cè)書(shū)的成本是12元,書(shū)店為了獲得最大利潤(rùn),該冊(cè)書(shū)的單價(jià)應(yīng)定為多少元?

附:,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面上定點(diǎn)到定直線的距離,為該平面上的動(dòng)點(diǎn),過(guò)作直線的垂線,垂足為,且;

1)試建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求動(dòng)點(diǎn)的軌跡的方程;

2)過(guò)點(diǎn)的直線交軌跡、兩點(diǎn),交直線于點(diǎn),已知,,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC,A,B,C所對(duì)的邊分別為a,b,c.滿足2acosC+bcosC+ccosB=0.

()求角C的大小;

()a=2,ABC的面積為,求C的大小。

查看答案和解析>>

同步練習(xí)冊(cè)答案