【題目】已知分別是離心率為的橢圓的左、右頂點,是橢圓的右焦點,且.
(1)求橢圓的方程;
(2)已知動直線與橢圓有且只有一個公共點.
①若交軸于點,求點橫坐標的取值范圍;
②設直線交直線于點,求的值.
科目:高中數(shù)學 來源: 題型:
【題目】某廠生產(chǎn)不同規(guī)格的一種產(chǎn)品,根據(jù)檢測標準,其合格產(chǎn)品的質(zhì)量y(g)與尺寸x(mm)之間近似滿足關系式c為大于0的常數(shù)).按照某項指標測定,當產(chǎn)品質(zhì)量與尺寸的比在區(qū)間內(nèi)時為優(yōu)等品.現(xiàn)隨機抽取6件合格產(chǎn)品,測得數(shù)據(jù)如下:
尺寸 | 38 | 48 | 58 | 68 | 78 | 88 |
質(zhì)量 | 16.8 | 18.8 | 20.7 | 22.4 | 24 | 25.5 |
質(zhì)量與尺寸的比 | 0.442 | 0.392 | 0.357 | 0.329 | 0.308 | 0.290 |
(1)現(xiàn)從抽取的6件合格產(chǎn)品中再任選3件,記ξ為取到優(yōu)等品的件數(shù),試求隨機變量ξ的分布列和期望;
(2)根據(jù)測得數(shù)據(jù)作了初步處理,得相關統(tǒng)計量的值如下表:
75.3 | 24.6 | 18.3 | 101.4 |
根據(jù)所給統(tǒng)計量,求y關于x的回歸方程.
附:對于樣本,其回歸直線的斜率和截距的最小二乘估計公式分別為:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在傳染病學中,通常把從致病刺激物侵入機體或者對機體發(fā)生作用起,到機體出現(xiàn)反應或開始呈現(xiàn)該疾病對應的相關癥狀時止的這一階段稱為潛伏期.一研究團隊統(tǒng)計了某地區(qū)1000名患者的相關信息,得到如下表格:
潛伏期(單位:天) | |||||||
人數(shù) | 85 | 205 | 310 | 250 | 130 | 15 | 5 |
(1)求這1000名患者的潛伏期的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)該傳染病的潛伏期受諸多因素的影響,為研究潛伏期與患者年齡的關系,以潛伏期是否超過6天為標準進行分層抽樣,從上述1000名患者中抽取200人,得到如下列聯(lián)表.請將列聯(lián)表補充完整,并根據(jù)列聯(lián)表判斷是否有的把握認為潛伏期與患者年齡有關;
潛伏期天 | 潛伏期天 | 總計 | |
50歲以上(含50歲) | 100 | ||
50歲以下 | 55 | ||
總計 | 200 |
(3)以這1000名患者的潛伏期超過6天的頻率,代替該地區(qū)1名患者潛伏期超過6天發(fā)生的概率,每名患者的潛伏期是否超過6天相互獨立.為了深入硏究,該硏究團隊隨機調(diào)查了20名患者,設潛伏期超過6天的人數(shù)為,則的期望是多少?
附:
0.05 | 0.025 | 0.010 | |
3.841 | 5.024 | 6.635 |
,其中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的左右焦點分別為、,其短軸的兩個端點分別為,,若;是邊長為2的等邊三角形.
(1)求橢圓的方程;
(2)過點且斜率為的直線交橢圓于,兩點,在軸上是否存在定點,使得直線,的斜率乘積為定值,若存在,求出定點,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2020年寒假期間新冠肺炎肆虐,全國人民眾志成城抗擊疫情.某市要求全體市民在家隔離,同時決定全市所有學校推遲開學.某區(qū)教育局為了讓學生“停課不停學”,要求學校各科老師每天在網(wǎng)上授課,每天共280分鐘,請學生自主學習.區(qū)教育局為了了解高三學生網(wǎng)上學習情況,上課幾天后在全區(qū)高三學生中采取隨機抽樣的方法抽取了100名學生進行問卷調(diào)查,為了方便表述把學習時間在分鐘的學生稱為類,把學習時間在分鐘的學生稱為類,把學習時間在分鐘的學生稱為類,隨機調(diào)查的100名學生學習時間的人數(shù)頻率分布直方圖如圖所示:以頻率估計概率回答下列問題:
(1)求100名學生中,,三類學生分別有多少人?
(2)在,,三類學生中,按分層抽樣的方法從上述100個學生中抽取10人,并在這10人中任意邀請3人電話訪談,求邀請的3人中是類的學生人數(shù)的分布列和數(shù)學期望;
(3)某校高三(1)班有50名學生,某天語文和數(shù)學老師計劃分別在19:00—19:40和20:00—20:40在線上與學生交流,由于受校園網(wǎng)絡平臺的限制,每次只能30個人同時在線學習交流.假設這兩個時間段高三(1)班都有30名學生相互獨立地隨機登錄參加學習交流.設表示參加語文或數(shù)學學習交流的人數(shù),當為多少時,其概率最大.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若存在極值,求實數(shù)a的取值范圍;
(2)設,設是定義在上的函數(shù).
(ⅰ)證明:在上為單調(diào)遞增函數(shù)(是的導函數(shù));
(ⅱ)討論的零點個數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com