【題目】已知函數(shù)
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)恰好有2個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
【答案】(1)當(dāng)時(shí),在上單調(diào)遞增;時(shí),增區(qū)間是,減區(qū)間是;(2).
【解析】
(1)求出,分兩種情況討論的范圍,在定義域內(nèi),分別令求得的范圍,可得函數(shù)增區(qū)間,求得的范圍,可得函數(shù)的減區(qū)間;(2)分4種情況討論,分別利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,結(jié)合零點(diǎn)存在定理,可篩選出符合題意的實(shí)數(shù)的取值范圍.
(1),當(dāng)時(shí),,在上單調(diào)遞增;
當(dāng)時(shí),由得,由得,
所以, 增區(qū)間是,單調(diào)減區(qū)間是;
(2)由(1),當(dāng)a≤0時(shí),f(x)在R遞增,沒有2個(gè)零點(diǎn);
當(dāng)a=1時(shí),f(x)f(0)=0,故f(x)僅有1個(gè)零點(diǎn),
當(dāng)時(shí),已知f(0)=0,故f(﹣lna)>0,
取f(﹣2lna)=-(+2lna﹣a),再令函數(shù)g(a)=+2lna﹣a,
故g′(a)=﹣<0,故g(a)>g(1)=0,故f(﹣2lna)<0,
f(x)在(﹣lna,﹣2lna)上也有1個(gè)零點(diǎn), 符合題意;
當(dāng)a>1時(shí),f(0)=0,故f(﹣lna)>0,
取,得f(x)在(﹣a,﹣lna)上也有1個(gè)零點(diǎn),符合題意,
綜上,若f(x)恰有2個(gè)零點(diǎn),則a∈(0,1)∪(1,+∞).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋中裝有除顏色外完全相同的黑球和白球共7個(gè),其中白球3個(gè),現(xiàn)有甲、乙兩人從袋中輪流摸球,甲先取,乙后取,然后甲再取,…,取后不放回,直到兩人中有一人取到白球時(shí)終止.每個(gè)球在每一次被取出的機(jī)會是等可能的.
(1)求取球2次即終止的概率;
(2)求甲取到白球的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,圓.
(1)過的直線截圓所得的弦長為,求該直線的斜率;
(2)動(dòng)圓同時(shí)平分圓與圓的周長.
①求動(dòng)圓圓心的軌跡方程;
②問動(dòng)圓是否過定點(diǎn),若經(jīng)過,則求定點(diǎn)坐標(biāo);若不經(jīng)過,則說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四棱錐中,平面平面,△ABC為等腰三角形,為的中點(diǎn),為的中點(diǎn),且,.
(Ⅰ)證明:平面;
(Ⅱ)若,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中錯(cuò)誤的是
A. 若命題p為真命題,命題q為假命題,則命題“pV(q)”為真命題
B. 命題“若a+b≠7,則a≠2或b≠5”為真命題
C. 命題“若x2-x=0,則x=0或x=1”的否命題為“若x2-x=0,則x≠0且x≠1”
D. 命題p: x>0,sinx>2x-1,則p為x>0,sinx≤2x-1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,圓.以極點(diǎn)為原點(diǎn),極軸為軸正半軸建立直角坐標(biāo)系,直線經(jīng)過點(diǎn)且傾斜角為.
求圓的直角坐標(biāo)方程和直線的參數(shù)方程;
已知直線與圓交與,,滿足為的中點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某品牌經(jīng)銷商在一廣場隨機(jī)采訪男性和女性用戶各50名,其中每天玩微信超過6小時(shí)的用戶稱為“微信控”,否則稱其“非微信控”,調(diào)查結(jié)果如下:
微信控 | 非微信控 | 合計(jì) | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合計(jì) | 56 | 44 | 100 |
(1)根據(jù)以上數(shù)據(jù),能否有的把握認(rèn)為“微信控”與“性別”有關(guān)?
(2)現(xiàn)從采訪的女性用戶中按分層抽樣的方法選出10人,再從中隨機(jī)抽取3人贈送禮品,求抽取3人中恰有2人為“微信控”的概率.
參考數(shù)據(jù):
P() | 0.10 | 0.050 | 0.025 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中:相關(guān)系數(shù)用來衡量兩個(gè)變量之間線性關(guān)系的強(qiáng)弱,越接近于1,相關(guān)性越弱;回歸直線過樣本點(diǎn)中心;相關(guān)指數(shù)用來刻畫回歸的效果,越小,說明模型的擬合效果越不好.兩個(gè)模型中殘差平方和越小的模型擬合的效果越好.正確的個(gè)數(shù)是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(ax-2)ex在x=1處取得極值.
(1)求a的值;
(2)求函數(shù)在區(qū)間[m,m+1]上的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com