【題目】已知函數(shù),其中.

(1)若是函數(shù)的導(dǎo)函數(shù)的零點(diǎn),求的單調(diào)區(qū)間;

(2)若不等式對(duì)恒成立,求實(shí)數(shù)的取值范圍.

【答案】(1)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(2)

【解析】

1)對(duì)函數(shù)fx)求導(dǎo)數(shù),利用x1是函數(shù)fx)導(dǎo)函數(shù)的零點(diǎn)求出a的值,再判斷fx)的單調(diào)性與單調(diào)區(qū)間;(2)求函數(shù)fx)的導(dǎo)數(shù),討論a0時(shí)f′(x)<0x[1,+∞)上恒成立,得出fx)≤f1)=0,符合題意;a0時(shí),f′(x)是x[1+∞)上的單調(diào)減函數(shù),利用f′(1)=a1,討論a1時(shí),fx)≤f1)=0,滿足題意;a1時(shí),易知存在x0[1+∞),使得f′(x0)=0,且fx0)>f1)=0,不符合題意;由此求出a的取值范圍.

(1)函數(shù),其中;∴

是函數(shù)的導(dǎo)函數(shù)的零點(diǎn),∴,解得,

,∴,且在上是單調(diào)減函數(shù),

時(shí),,單調(diào)遞增;時(shí),,單調(diào)遞減;

所以的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為

(2),

時(shí),上恒成立,

是單調(diào)遞減函數(shù),且,∴恒成立,符合題意;

②當(dāng)時(shí),上的單調(diào)減函數(shù),且;

,即,上單調(diào)遞減,且,滿足題意;

,即,則易知存在,使得,

單調(diào)遞增,在單調(diào)遞減,

時(shí),存在,則不恒成立,不符合題意;

綜上可知,實(shí)數(shù)的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),,的導(dǎo)函數(shù).

1)若,求的值;

2)討論的單調(diào)性;

3)若恰有一個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某比賽為甲、乙兩名運(yùn)動(dòng)員制訂下列發(fā)球規(guī)則:規(guī)則一:投擲一枚硬幣,出現(xiàn)正面向上,甲發(fā)球,否則乙發(fā)球;規(guī)則二:從裝有個(gè)紅球與個(gè)黑球的布袋中隨機(jī)地取出個(gè)球,如果同色,甲發(fā)球,否則乙發(fā)球;規(guī)則三:從裝有個(gè)紅球與個(gè)黑球的布袋中隨機(jī)地取出個(gè)球,如果同色,甲發(fā)球,否則乙發(fā)球.

其中對(duì)甲、乙公平的規(guī)則是(

A.規(guī)則一和規(guī)則二B.規(guī)則一和規(guī)則三C.規(guī)則二和規(guī)則三D.規(guī)則二

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著移動(dòng)互聯(lián)網(wǎng)的發(fā)展,與餐飲美食相關(guān)的手機(jī)軟件層出不窮.為調(diào)查某款訂餐軟件的商家的服務(wù)情況,統(tǒng)計(jì)了10次訂餐“送達(dá)時(shí)間”,得到莖葉圖如下:(時(shí)間:分鐘)

(1)請(qǐng)計(jì)算“送達(dá)時(shí)間”的平均數(shù)與方差:

(2)根據(jù)莖葉圖填寫(xiě)下表:

送達(dá)時(shí)間

35分組以內(nèi)(包括35分鐘)

超過(guò)35分鐘

頻數(shù)

A

B

頻率

C

D

在答題卡上寫(xiě)出,,的值;

(3)在(2)的情況下,以頻率代替概率.現(xiàn)有3個(gè)客戶應(yīng)用此軟件訂餐,求出在35分鐘以內(nèi)(包括35分鐘)收到餐品的人數(shù)的分布列,并求出數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了適應(yīng)新高考改革,某校組織了一次新高考質(zhì)量測(cè)評(píng)(總分100分),在成績(jī)統(tǒng)計(jì)分析中,抽取12名學(xué)生的成績(jī)以莖葉圖形式表示如圖,學(xué)校規(guī)定測(cè)試成績(jī)低于87分的為未達(dá)標(biāo),分?jǐn)?shù)不低于87分的為達(dá)標(biāo)”.

1)求這組數(shù)據(jù)的眾數(shù)和平均數(shù);

2)在這12名學(xué)生中從測(cè)試成績(jī)介于80~90之間的學(xué)生中任選2人,求至少有1達(dá)標(biāo)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著社會(huì)的進(jìn)步與發(fā)展,中國(guó)的網(wǎng)民數(shù)量急劇增加.下表是中國(guó)從年網(wǎng)民人數(shù)及互聯(lián)網(wǎng)普及率、手機(jī)網(wǎng)民人數(shù)(單位:億)及手機(jī)網(wǎng)民普及率的相關(guān)數(shù)據(jù).

年份

網(wǎng)民人數(shù)

互聯(lián)網(wǎng)普及率

手機(jī)網(wǎng)民人數(shù)

手機(jī)網(wǎng)民普及率

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

(互聯(lián)網(wǎng)普及率(網(wǎng)民人數(shù)/人口總數(shù))×100%;手機(jī)網(wǎng)民普及率(手機(jī)網(wǎng)民人數(shù)/人口總數(shù))×100%

(Ⅰ)從這十年中隨機(jī)選取一年,求該年手機(jī)網(wǎng)民人數(shù)占網(wǎng)民總?cè)藬?shù)比值超過(guò)80%的概率;

(Ⅱ)分別從網(wǎng)民人數(shù)超過(guò)6億的年份中任選兩年,記為手機(jī)網(wǎng)民普及率超過(guò)50%的年數(shù),求的分布列及數(shù)學(xué)期望;

(Ⅲ)若記年中國(guó)網(wǎng)民人數(shù)的方差為,手機(jī)網(wǎng)民人數(shù)的方差為,試判斷的大小關(guān)系.(只需寫(xiě)出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓方程為,過(guò)點(diǎn)的直線l交橢圓于點(diǎn)A,B,O是坐標(biāo)原點(diǎn),點(diǎn)P滿足,點(diǎn)N的坐標(biāo)為,當(dāng)l繞點(diǎn)M旋轉(zhuǎn)時(shí),求:

1)動(dòng)點(diǎn)P的軌跡方程;

2的最小值與最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某精準(zhǔn)扶貧幫扶單位,為幫助定點(diǎn)扶貧村真正脫貧,堅(jiān)持扶貧同扶智相結(jié)合,幫助精準(zhǔn)扶貧戶利用互聯(lián)網(wǎng)電商渠道銷售當(dāng)?shù)靥禺a(chǎn)蘋(píng)果.蘋(píng)果單果直徑不同單價(jià)不同,為了更好的銷售,現(xiàn)從該精準(zhǔn)扶貧戶種植的蘋(píng)果樹(shù)上隨機(jī)摘下了50個(gè)蘋(píng)果測(cè)量其直徑,經(jīng)統(tǒng)計(jì),其單果直徑分布在區(qū)間[50,95]內(nèi)(單位:),統(tǒng)計(jì)的莖葉圖如圖所示:

(Ⅰ)按分層抽樣的方法從單果直徑落在[80,85),[85,90)的蘋(píng)果中隨機(jī)抽取6個(gè),再?gòu)倪@6個(gè)蘋(píng)果中隨機(jī)抽取2個(gè),求這兩個(gè)蘋(píng)果單果直徑均在[85,90)內(nèi)的概率;

(Ⅱ)以此莖葉圖中單果直徑出現(xiàn)的頻率代表概率.已知該精準(zhǔn)扶貧戶有20000個(gè)約5000千克蘋(píng)果待出售,某電商提出兩種收購(gòu)方案:

方案:所有蘋(píng)果均以5.5元/千克收購(gòu);

方案:按蘋(píng)果單果直徑大小分3類裝箱收購(gòu),每箱裝25個(gè)蘋(píng)果,定價(jià)收購(gòu)方式為:?jiǎn)喂睆?在[50,65)內(nèi)按35元/箱收購(gòu),在[65,90)內(nèi)按50元/箱收購(gòu),在[90,95]內(nèi)按35元/箱收購(gòu).包裝箱與分揀裝箱工費(fèi)為5元/箱.請(qǐng)你通過(guò)計(jì)算為該精準(zhǔn)扶貧戶推薦收益最好的方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在長(zhǎng)方體ABCD-A1B1C1D1中(如圖),AD=AA1=1,AB=2,點(diǎn)E是棱AB的中點(diǎn).

(1)求異面直線AD1EC所成角的大;

(2)《九章算術(shù)》中,將四個(gè)面都是直角三角形的四面體稱為鱉臑,試問(wèn)四面體D1CDE是否為鱉臑?并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案