【題目】我國(guó)2019年新年賀歲大片《流浪地球》自上映以來(lái)引發(fā)了社會(huì)的廣泛關(guān)注,受到了觀(guān)眾的普遍好評(píng).假設(shè)男性觀(guān)眾認(rèn)為《流浪地球》好看的概率為,女性觀(guān)眾認(rèn)為《流浪地球》好看的概率為.某機(jī)構(gòu)就《流浪地球》是否好看的問(wèn)題隨機(jī)采訪(fǎng)了4名觀(guān)眾.
(1)若這4名觀(guān)眾2男2女,求這4名觀(guān)眾中女性認(rèn)為好看的人數(shù)比男性認(rèn)為好看的人數(shù)多的概率;
(2)若這4名觀(guān)眾都是男性,設(shè)X表示這4名觀(guān)眾中認(rèn)為《流浪地球》好看的人數(shù),求X的分布列與數(shù)學(xué)期望.
【答案】(1);(2).
【解析】
(1)設(shè)X表示2名女性觀(guān)眾中認(rèn)為好看的人數(shù),Y表示2名男性觀(guān)眾中認(rèn)為好看的人數(shù),設(shè)事件A表示“這4名觀(guān)眾中女性認(rèn)為好看的人數(shù)比男性認(rèn)為好看的人數(shù)多”,
,利用互斥事件與相互獨(dú)立事件的概率計(jì)算公式即可得出;
(2)由題意知,利用二項(xiàng)分布的性質(zhì)求解即可.
設(shè)表示2名女性觀(guān)眾中認(rèn)為好看的人數(shù),表示2名男性觀(guān)眾中認(rèn)為好看的人數(shù),
則,.
(1)設(shè)事件表示“這4名觀(guān)眾中女性認(rèn)為好看的人數(shù)比男性認(rèn)為好看的人數(shù)多”,,
(2)X的可能取值為0,1,2,3,4,
X服從二項(xiàng)分布,
∴X的分布列為:
X | 0 | 1 | 2 | 3 | 4 |
P |
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)求與橢圓有共同焦點(diǎn)且過(guò)點(diǎn)的雙曲線(xiàn)的標(biāo)準(zhǔn)方程;
(2)已知拋物線(xiàn)的焦點(diǎn)在軸上,拋物線(xiàn)上的點(diǎn)到焦點(diǎn)的距離等于5,求拋物線(xiàn)的標(biāo)準(zhǔn)方程和的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校數(shù)學(xué)課外興趣小組為研究數(shù)學(xué)成績(jī)是否與性別有關(guān),先統(tǒng)計(jì)本校高三年級(jí)每個(gè)學(xué)生一學(xué)期數(shù)學(xué)成績(jī)平均分(采用百分制),剔除平均分在40分以下的學(xué)生后,共有男生300名,女生200名.現(xiàn)采用分層抽樣的方法,從中抽取了100名學(xué)生,按性別分為兩組,并將兩組學(xué)生成績(jī)分為6組,得到如下所示頻數(shù)分布表.
分?jǐn)?shù)段 | [40,50) | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
男 | 3 | 9 | 18 | 15 | 6 | 9 |
女 | 6 | 4 | 5 | 10 | 13 | 2 |
(1)估計(jì)男、女生各自的平均分(同一組數(shù)據(jù)用該組區(qū)間中點(diǎn)值作代表),從計(jì)算結(jié)果看,數(shù)學(xué)成績(jī)與性別是否有關(guān);
(2)規(guī)定80分以上為優(yōu)分(含80分),請(qǐng)你根據(jù)已知條件作出2×2列聯(lián)表,并判斷是否有90%以上的把握認(rèn)為“數(shù)學(xué)成績(jī)與性別有關(guān)”.
優(yōu)分 | 非優(yōu)分 | 合計(jì) | |
男生 | |||
女生 | |||
附表及公式:
0.100 | 0.050 | 0.010 | 0.001 | |
k | 2.706 | 3.841 | 6.635 | 10.828 |
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了診斷高三學(xué)生在市“一模”考試中文科數(shù)學(xué)備考的狀況,隨機(jī)抽取了50名學(xué)生的市“一模”數(shù)學(xué)成績(jī)進(jìn)行分析,將這些成績(jī)分為九組,第一組[60,70),第二組[70,80),……,第九組[140,150],并繪制了如圖所示的頻率分布直方圖.
(1)試求出的值并估計(jì)該校文科數(shù)學(xué)成績(jī)的眾數(shù)和中位數(shù);
(2)現(xiàn)從成績(jī)?cè)?/span>[120,150]的同學(xué)中隨機(jī)抽取2人進(jìn)行談話(huà),那么抽取的2人中恰好有一人的成績(jī)?cè)?/span>[130,140)中的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩名射擊運(yùn)動(dòng)員一次射擊命中目標(biāo)的概率分別是0.7,0.6,且每次射擊命中與否相互之間沒(méi)有影響,求:
(1)甲射擊三次,第三次才命中目標(biāo)的概率;
(2)甲、乙兩人在第一次射擊中至少有一人命中目標(biāo)的概率;
(3)甲、乙各射擊兩次,甲比乙命中目標(biāo)的次數(shù)恰好多一次的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: 的右焦點(diǎn)為F(2,0),過(guò)點(diǎn)F的直線(xiàn)交橢圓于M、N兩點(diǎn)且MN的中點(diǎn)坐標(biāo)為 .
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線(xiàn)l不經(jīng)過(guò)點(diǎn)P(0,b)且與C相交于A,B兩點(diǎn),若直線(xiàn)PA與直線(xiàn)PB的斜率的和為1,試判斷直線(xiàn) l是否經(jīng)過(guò)定點(diǎn),若經(jīng)過(guò)定點(diǎn),請(qǐng)求出該定點(diǎn);若不經(jīng)過(guò)定點(diǎn),請(qǐng)給出理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A. 命題,都是假命題,則命題“”為真命題.
B. ,函數(shù)都不是奇函數(shù).
C. 函數(shù)的圖像關(guān)于對(duì)稱(chēng) .
D. 將函數(shù)的圖像上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍后得到
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于的二次函數(shù),其中,為實(shí)數(shù),事件為“函數(shù)在區(qū)間為增函數(shù)”.
(1)若為區(qū)間上的整數(shù)值隨機(jī)數(shù),為區(qū)間上的整數(shù)值隨機(jī)數(shù),求事件發(fā)生的概率;
(2)若為區(qū)間上的均勻隨機(jī)數(shù),為區(qū)間上的均勻隨機(jī)數(shù),求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三棱錐的體積為1.在側(cè)棱上取一點(diǎn),使,然后在上取一點(diǎn),使,繼續(xù)在上取一點(diǎn),使,……按上述步驟,依次得到點(diǎn),記三棱錐的體積依次構(gòu)成數(shù)列,數(shù)列的前項(xiàng)和.
(1)求數(shù)列和的通項(xiàng)公式;
(2)記,為數(shù)列的前項(xiàng)和,若不等式對(duì)一切恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com