已知直線與橢圓相交于兩點(diǎn),點(diǎn)是線段上的一點(diǎn),且點(diǎn)在直線上.
(1)求橢圓的離心率;
(2)若橢圓的焦點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)在單位圓上,求橢圓的方程.

(1);(2)

解析試題分析:(1)設(shè),由題中的直線方程與橢圓方程聯(lián)立消去,得,由韋達(dá)定理得,進(jìn)而得到,因此得的中點(diǎn),且點(diǎn)在直線上建立關(guān)系得,進(jìn)而得離心率的值;
(2)由(1)的結(jié)論,設(shè)橢圓的一個(gè)焦點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為,且被直線垂直且平分建立方程組,解之得,結(jié)合點(diǎn)在單位圓上,得到關(guān)于的方程,并解得,由此即可得到橢圓方程.
(1)由知M是AB的中點(diǎn),
設(shè)A、B兩點(diǎn)的坐標(biāo)分別為


∴M點(diǎn)的坐標(biāo)為
又M點(diǎn)的直線l上:
, 
(2)由(1)知,根據(jù)對(duì)稱性,不妨設(shè)橢圓的右焦點(diǎn)關(guān)于直線l:上的對(duì)稱點(diǎn)為
則有              
由已知,
∴所求的橢圓的方程為                         
考點(diǎn):橢圓的標(biāo)準(zhǔn)方程及簡(jiǎn)單的幾何性質(zhì);兩點(diǎn)關(guān)于一條直線對(duì)稱;直線與橢圓的位置關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系中,點(diǎn)到點(diǎn)的距離比它到軸的距離多1,記點(diǎn)的軌跡為.
(1)求軌跡為的方程;
(2)設(shè)斜率為的直線過(guò)定點(diǎn),求直線與軌跡恰好有一個(gè)公共點(diǎn),兩個(gè)公共點(diǎn),三個(gè)公共點(diǎn)時(shí)的相應(yīng)取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)(2011•重慶)如圖,橢圓的中心為原點(diǎn)O,離心率e=,一條準(zhǔn)線的方程為x=2

(Ⅰ)求該橢圓的標(biāo)準(zhǔn)方程.
(Ⅱ)設(shè)動(dòng)點(diǎn)P滿足,其中M,N是橢圓上的點(diǎn).直線OM與ON的斜率之積為﹣
問(wèn):是否存在兩個(gè)定點(diǎn)F1,F(xiàn)2,使得|PF1|+|PF2|為定值.若存在,求F1,F(xiàn)2的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

橢圓:的左頂點(diǎn)為,直線交橢圓兩點(diǎn)(下),動(dòng)點(diǎn)和定點(diǎn)都在橢圓上.
(1)求橢圓方程及四邊形的面積.
(2)若四邊形為梯形,求點(diǎn)的坐標(biāo).
(3)若為實(shí)數(shù),,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C:( )的離心率為,點(diǎn)(1,)在橢圓C上.
(1)求橢圓C的方程;
(2)若橢圓C的兩條切線交于點(diǎn)M(4,),其中,切點(diǎn)分別是A、B,試?yán)媒Y(jié)論:在橢圓上的點(diǎn)()處的橢圓切線方程是,證明直線AB恒過(guò)橢圓的右焦點(diǎn);
(3)試探究的值是否恒為常數(shù),若是,求出此常數(shù);若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖為橢圓C:的左、右焦點(diǎn),D,E是橢圓的兩個(gè)頂點(diǎn),橢圓的離心率,的面積為.若點(diǎn)在橢圓C上,則點(diǎn)稱為點(diǎn)M的一個(gè)“橢圓”,直線與橢圓交于A,B兩點(diǎn),A,B兩點(diǎn)的“橢圓”分別為P,Q.

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)問(wèn)是否存在過(guò)左焦點(diǎn)的直線,使得以PQ為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)?若存在,求出該直線的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(2011•湖北)平面內(nèi)與兩定點(diǎn)A1(﹣a,0),A2(a,0)(a>0)連線的斜率之積等于非零常數(shù)m的點(diǎn)的軌跡,加上A1、A2兩點(diǎn)所成的曲線C可以是圓、橢圓成雙曲線.
(1)求曲線C的方程,并討論C的形狀與m值的關(guān)系;
(2)當(dāng)m=﹣1時(shí),對(duì)應(yīng)的曲線為C1;對(duì)給定的m∈(﹣1,0)∪(0,+∞),對(duì)應(yīng)的曲線為C2,設(shè)F1、F2是C2的兩個(gè)焦點(diǎn).試問(wèn):在C1上,是否存在點(diǎn)N,使得△F1NF2的面積S=|m|a2.若存在,求tanF1NF2的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

過(guò)點(diǎn)作傾斜角為的直線與曲線C交于不同的兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知,,,分別是橢圓的四個(gè)頂點(diǎn),△是一個(gè)邊長(zhǎng)為2的等邊三角形,其外接圓為圓
(1)求橢圓及圓的方程;
(2)若點(diǎn)是圓劣弧上一動(dòng)點(diǎn)(點(diǎn)異于端點(diǎn),),直線分別交線段,橢圓于點(diǎn),,直線交于點(diǎn)
(ⅰ)求的最大值;
(ⅱ)試問(wèn):,兩點(diǎn)的橫坐標(biāo)之和是否為定值?若是,求出該定值;若不是,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案