【題目】執(zhí)行如圖所示的程序框圖,若輸入n=10,則輸出的S=( )

A.
B.
C.
D.

【答案】A
【解析】解:輸入n的值為10,框圖首先給累加變量S和循環(huán)變量i分別賦值0和2,
判斷2≤10成立,執(zhí)行 ,i=2+2=4;
判斷4≤10成立,執(zhí)行 = ,i=4+2=6;
判斷6≤10成立,執(zhí)行 ,i=6+2=8;
判斷8≤10成立,執(zhí)行 ,i=8+2=10;
判斷10≤10成立,執(zhí)行 ,i=10+2=12;
判斷12≤10不成立,跳出循環(huán),算法結(jié)束,輸出S的值為
故選A.
框圖首先給累加變量S和循環(huán)變量i分別賦值0和2,在輸入n的值為10后,對(duì)i的值域n的值大小加以判斷,滿足i≤n,
執(zhí)行 ,i=i+2,不滿足則跳出循環(huán),輸出S.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)z1 , z2是復(fù)數(shù),則下列命題中的假命題是(
A.若|z1﹣z2|=0,則 =
B.若z1= ,則 =z2
C.若|z1|=|z2|,則z1? =z2?
D.若|z1|=|z2|,則z12=z22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義“正對(duì)數(shù)”:ln+x= ,現(xiàn)有四個(gè)命題:
①若a>0,b>0,則ln+(ab)=bln+a;
②若a>0,b>0,則ln+(ab)=ln+a+ln+b;
③若a>0,b>0,則 ;
④若a>0,b>0,則ln+(a+b)≤ln+a+ln+b+ln2.
其中的真命題有(寫出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】兩條平行直線和圓的位置關(guān)系定義為:若兩條平行直線和圓有四個(gè)不同的公共點(diǎn),則稱兩條平行線和圓“相交”;若兩條平行直線和圓沒有公共點(diǎn),則稱兩條平行線和圓“相離”;若兩平行直線和圓有一個(gè)、兩個(gè)或三個(gè)不同的公共點(diǎn),則稱兩條平行線和圓“相切”.已知直線,和圓相切,則的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,,,設(shè)的外接圓圓心為.

(1)若與直線相切,求實(shí)數(shù)的值;

(2)設(shè)點(diǎn)上,使的面積等于12的點(diǎn)有且只有三個(gè),試問這樣的是否存在?若存在求出的標(biāo)準(zhǔn)方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2(a+2)x+a2 , g(x)=﹣x2+2(a﹣2)x﹣a2+8.設(shè)H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)},(max{p,q})表示p,q中的較大值,min{p,q}表示p,q中的較小值),記H1(x)的最小值為A,H2(x)的最大值為B,則A﹣B=( )
A.16
B.﹣16
C.﹣16a2﹣2a﹣16
D.16a2+2a﹣16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐P-ABC的三條側(cè)棱兩兩互相垂直,且AB=,BC=,AC=2,則此三棱錐外接球的表面積為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分14分)已知過原點(diǎn)的動(dòng)直線與圓 相交于不同的兩點(diǎn)

1)求圓的圓心坐標(biāo);

2)求線段的中點(diǎn)的軌跡的方程;

3)是否存在實(shí)數(shù),使得直線 與曲線只有一個(gè)交點(diǎn)?若存在,求出的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,圓軸負(fù)半軸交于點(diǎn),過點(diǎn)的直線,分別與圓交于,兩點(diǎn).

)若,,求的面積;

)若直線過點(diǎn),證明:為定值,并求此定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案