【題目】世界那么大,我想去看看,每年高考結(jié)束后,處于休養(yǎng)狀態(tài)的高中畢業(yè)生旅游動(dòng)機(jī)強(qiáng)烈,旅游可支配收入日益增多,可見高中畢業(yè)生旅游是一個(gè)巨大的市場(chǎng).為了解高中畢業(yè)生每年旅游消費(fèi)支出(單位:百元)的情況,相關(guān)部門隨機(jī)抽取了某市的1000名畢業(yè)生進(jìn)行問卷調(diào)查,并把所得數(shù)據(jù)列成如下所示的頻數(shù)分布表:
組別 | |||||
頻數(shù) |
(1)求所得樣本的中位數(shù)(精確到百元);
(2)根據(jù)樣本數(shù)據(jù),可近似地認(rèn)為學(xué)生的旅游費(fèi)用支出服從正態(tài)分布,若該市共有高中畢業(yè)生35000人,試估計(jì)有多少位同學(xué)旅游費(fèi)用支出在 8100元以上;
(3)已知本數(shù)據(jù)中旅游費(fèi)用支出在范圍內(nèi)的8名學(xué)生中有5名女生,3名男生, 現(xiàn)想選其中3名學(xué)生回訪,記選出的男生人數(shù)為,求的分布列與數(shù)學(xué)期望.
附:若,則,,.
【答案】(1)(百元);(2);(3).
【解析】試題分析:(1)根據(jù)中位數(shù)定義列式解得中位數(shù),(2)由正態(tài)分布得旅游費(fèi)用支出在元以上的概率為,再根據(jù)頻數(shù)等于總數(shù)與頻率乘積得人數(shù).(3)先確定隨機(jī)變量取法,再利用組合數(shù)分別求對(duì)應(yīng)概率,列表可得分布列,最后根據(jù)數(shù)學(xué)期望公式求期望.
試題解析:(1)設(shè)樣本的中位數(shù)為,則,
解得,所得樣本中位數(shù)為(百元).
(2),,,
旅游費(fèi)用支出在元以上的概率為
,
,
估計(jì)有位同學(xué)旅游費(fèi)用支出在元以上.
(3)的可能取值為,,,,
, ,
, ,
∴的分布列為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中央政府為了應(yīng)對(duì)因人口老齡化而造成的勞動(dòng)力短缺等問題,擬定出臺(tái)“延遲退休年齡政策”.為了解人們對(duì)“延遲退休年齡政策”的態(tài)度,責(zé)成人社部進(jìn)行調(diào)研.人社部從網(wǎng)上年齡在15~65歲的人群中隨機(jī)調(diào)查100人,調(diào)查數(shù)據(jù)的頻率分布直方圖和支持“延遲退休”的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如下:
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為以45歲為分界點(diǎn)的不同人群對(duì)“延遲退休年齡政策”的支持度有差異;
(2)若以45歲為分界點(diǎn),從不支持“延遲退休”的人中按分層抽樣的方法抽取8人參加某項(xiàng)活動(dòng).現(xiàn)從這8人中隨機(jī)抽2人.
①抽到1人是45歲以下時(shí),求抽到的另一人是45歲以上的概率.
②記抽到45歲以上的人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.
參考數(shù)據(jù):
,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)欲做一個(gè)介紹企業(yè)發(fā)展史的銘牌,銘牌的截面形狀是如圖所示的扇形環(huán)面(由扇形挖去扇形后構(gòu)成的).已知,線段與弧、弧的長(zhǎng)度之和為米,圓心角為弧度.
(1)求關(guān)于的函數(shù)解析式;
(2)記銘牌的截面面積為,試問取何值時(shí),的值最大?并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知四邊形是直角梯形,,,其中是上的一點(diǎn),四邊形是菱形,滿足,沿將折起,使
(1)求證:平面平面
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若的圖象在點(diǎn)處的切線方程為,求在區(qū)間[-2,4]上的最大值;
(2)當(dāng)時(shí),若在區(qū)間(-1,1)上不單調(diào),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】唐三彩,中國古代陶瓷燒制工藝的珍品,它吸取了中國國畫、雕塑等工藝美術(shù)的特點(diǎn),在中國文化中占有重要的歷史地位,在中國的陶瓷史上留下了濃墨重彩的一筆.唐三彩的生產(chǎn)至今已有1300多年的歷史,對(duì)唐三彩的復(fù)制和仿制工藝,至今也有百余年的歷史,某陶瓷廠在生產(chǎn)過程中,對(duì)仿制100件工藝品測(cè)得其重量(單位:) 數(shù)據(jù),將數(shù)據(jù)分組如下表:
(1)統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值(例如區(qū)間的中點(diǎn)值是2.25)作為代表.據(jù)此,估計(jì)這100個(gè)數(shù)據(jù)的平均值;
(2)根據(jù)樣本數(shù)據(jù),以頻率作為槪率,若該陶瓷廠生產(chǎn)這樣的工藝品5000件,試估計(jì)重量落在中的件數(shù);
(3)從第一組和第六組6件工藝品中隨機(jī)抽取2個(gè)工藝品,求一個(gè)來自第一組,一個(gè)來自第六組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,,過的直線與橢圓交于兩點(diǎn),的周長(zhǎng)為.
(1)求橢圓的方程;
(2)如圖,點(diǎn),分別是橢圓的左頂點(diǎn)、左焦點(diǎn),直線與橢圓交于不同的兩點(diǎn)、(、都在軸上方).且.證明:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為平行四邊形, , ,且底面.
(1)證明:平面平面;
(2)若為的中點(diǎn),且,求二面角的大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com