(本小題滿分14分)如圖,在一個由矩形與正三角形組合而成的平面圖形中,現(xiàn)將正三角形沿折成四棱錐,使在平面內的射影恰好在邊上.


(1)求證:平面⊥平面;
(2)求直線與平面所成角的正弦值.

第20題

 
                             

 
解:(1)折起后,因在平面內的射影
在邊上,所以,平面⊥平面且交線
.………………………………………4分
又矩形,所以,
由兩平面垂直的性質定理,平面⊥平面.…7分
(2)折起后,由(1), 在△中,∠,
,同理得……9分
,又 ∴,知∠PAC是所求角…………11分
中,.………………………13分
即直線與平面所成角的正弦值為………………14分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)如圖,已知斜三棱柱的底面是直角三角形,,側棱與底面所成的角為,點在底面上的射影落在上.

(1)若點恰為的中點,且,求的值.

(2)若,且當時,求二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

平方米的材料制成一個有蓋的圓錐形容器,如果在制作過程中材料無損耗,且材料的厚度忽略不計,底面半徑長為,圓錐母線的長為

(1)、建立的函數(shù)關系式,并寫出的取值范圍;(6分)
(2)、圓錐的母線與底面所成的角大小為,求所制作的圓錐形容器容積多少立方米(精確到0. 01m3) (6分)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐PABCD中,PD⊥平面ABCD,ADCD,DB平分∠ADC,EPC的中點,ADCD=1,DB=2.

(1)證明PA∥平面BDE;
(2)證明AC⊥平面PBD;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,直二面角D—AB—E中,四邊形ABCD是邊長為2的正方形,AE=EB,點F在CE上,且平面ACE。

(I)求證:平面BCE;
(II)求二面角B—AC—E的正弦值;
(III)求點D到平面ACE的距離。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知某幾何體的正視圖、側視圖都是直角三角形,俯視圖是矩形(尺寸如圖所示).
 
(1)在所給提示圖中,作出該幾何體的直觀圖;
(2)求該幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若正三棱柱的棱長均相等,則與側面所成角的正切值為     .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


(12分)
如圖,已知四棱錐的底面為矩形,平面分別為的中點.

(Ⅰ)求證:
(Ⅱ)求二面角的大小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知三個平面,若,且相交但不垂直,直線分別為內的直線,則下列命題中:①任意;②任意; ③存在; ④存在; ⑤任意; ⑥存在。真命題的序號是_________ 。

查看答案和解析>>

同步練習冊答案