【題目】已知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和Sn滿足S1>1,且(nN*)

(1){an}的通項(xiàng)公式;

(2)設(shè)數(shù)列滿足Tn為數(shù)列{bn}的前n項(xiàng)和,求Tn;

(3)設(shè)*(為正整數(shù)),問(wèn)是否存在正整數(shù),使得當(dāng)任意正整數(shù)n>N時(shí)恒有Cn>2015成立?若存在,請(qǐng)求出正整數(shù)的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

【答案】1.(23)不存在見(jiàn)解析

【解析】

(1) ,計(jì)算得到,,利用公式化簡(jiǎn)得到,故數(shù)列為等差數(shù)列,計(jì)算得到答案.

(2)討論為偶數(shù)和為奇數(shù)兩種情況,利用分組求和法計(jì)算得到答案.

(3) 不存在,當(dāng)為奇數(shù)時(shí),計(jì)算得到,數(shù)列單調(diào)性遞減,得到證明.

1時(shí),,且,解得

時(shí),,兩式相減得:

,,

,為等差數(shù)列,

2,

當(dāng)為偶數(shù)時(shí),Tn=(b1+b3+…+bn–1)+(b2+b4+…+bn) ,

當(dāng)為奇數(shù)時(shí),Tn=(b1+b3+…+bn)+(b2+b4+…+bn–1)

(3),

當(dāng)n為奇數(shù)時(shí),

Cn+2<Cn,故{Cn}遞減,

因此不存在滿足條件的正整數(shù)N

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方體中, 、分別是、的中點(diǎn).

(1)求證:四邊形是菱形;

(2)求異面直線所成角的大小 (結(jié)果用反三角函數(shù)值表示) .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一條景觀道的一端有一個(gè)半徑為米的圓形摩天輪O,逆時(shí)針分鐘轉(zhuǎn)一圈,從處進(jìn)入摩天輪的座艙,垂直于地面,在距離米處設(shè)置了一個(gè)望遠(yuǎn)鏡.

1)同學(xué)甲打算獨(dú)自乘坐摩天輪,但是其母親不放心,于是約定在登上摩天輪座艙分鐘后,在座艙內(nèi)向其母親揮手致意,而其母親則在望遠(yuǎn)鏡中仔細(xì)觀看.問(wèn)望遠(yuǎn)鏡的仰角應(yīng)調(diào)整為多少度?(精確到1度)

2)在同學(xué)甲向其母親揮手致意的同時(shí),同一座艙的另一名乘客乙在拍攝地面上的一條綠化帶,發(fā)現(xiàn)取景的視角恰為,求綠化帶的長(zhǎng)度(精確到1米)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

(2)若不等式對(duì)于任意成立,求正實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓),過(guò)原點(diǎn)的兩條直線分別與交于點(diǎn)、,得到平行四邊形.

1)當(dāng)為正方形時(shí),求該正方形的面積.

2)若直線關(guān)于軸對(duì)稱,上任意一點(diǎn)的距離分別為,當(dāng)為定值時(shí),求此時(shí)直線的斜率及該定值.

3)當(dāng)為菱形,且圓內(nèi)切于菱形時(shí),求,滿足的關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,,分別是橢圓的左右焦點(diǎn),過(guò)點(diǎn)的直線交橢圓于兩點(diǎn),且的周長(zhǎng)為12

(Ⅰ)求橢圓的方程

(Ⅱ)過(guò)點(diǎn)作斜率為的直線與橢圓交于兩點(diǎn),,試判斷在軸上是否存在點(diǎn),使得是以為底邊的等腰三角形若存在,求點(diǎn)橫坐標(biāo)的取值范圍,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

1)在曲線上任取一點(diǎn),連接,在射線上取點(diǎn),使,點(diǎn)軌跡的極坐標(biāo)方程;

2)在曲線上任取一點(diǎn),在曲線上任取一點(diǎn),的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱中,底面△是等腰直角三角形,,為側(cè)棱的中點(diǎn).

1)求證:平面;

2)求異面直線所成角的大。ńY(jié)果用反三角函數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,線段都是圓的弦,且垂直且相交于坐標(biāo)原點(diǎn),如圖所示,設(shè)△的面積為,設(shè)△的面積為.

1)設(shè)點(diǎn)的橫坐標(biāo)為,用表示;

2)求證:為定值;

3)用、、表示出,試研究是否有最小值,如果有,求出最小值,并寫出此時(shí)直線的方程;若沒(méi)有最小值,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案