【題目】某品牌手機(jī)廠商推出新款的旗艦機(jī)型,并在某地區(qū)跟蹤調(diào)查得到這款手機(jī)上市時(shí)間(第x周)和市場(chǎng)占有率(y﹪)的幾組相關(guān)數(shù)據(jù)如下表:
1 | 2 | 3 | 4 | 5 | |
0.03 | 0.06 | 0.1 | 0.14 | 0.17 |
(Ⅰ)根據(jù)表中的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(Ⅱ)根據(jù)上述線性回歸方程,分析該款旗艦機(jī)型市場(chǎng)占有率的變化趨勢(shì),并預(yù)測(cè)在第幾周,該款旗艦機(jī)型市場(chǎng)占有率將首次超過 0.40﹪(最后結(jié)果精確到整數(shù)).
參考公式:,
【答案】(1) (2)所以自上市起經(jīng)過12個(gè)周,該款旗艦機(jī)型市場(chǎng)占有率能超過﹪
【解析】試題分析:(Ⅰ)根據(jù)表中數(shù)據(jù)計(jì)算 ,計(jì)算回歸系數(shù),寫出線性回歸方程;
(Ⅱ)根據(jù)回歸方程得出上市時(shí)間與市場(chǎng)占有率的關(guān)系,列出不等式求出解集即可預(yù) 測(cè)結(jié)果.
試題解析:(Ⅰ)由題中的數(shù)據(jù)可知:,,
所以關(guān)于的線性回歸方程:
(Ⅱ)由(Ⅰ)知,,解得,
所以自上市起經(jīng)過12個(gè)周,該款旗艦機(jī)型市場(chǎng)占有率能超過﹪
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求在上的最小值;
(2)若關(guān)于的不等式只有兩個(gè)整數(shù)解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“中國人均讀書4.3本(包括網(wǎng)絡(luò)文學(xué)和教科書),比韓國的11本、法國的20本、日本的40本、猶太人的64本少得多,是世界上人均讀書最少的國家.”這個(gè)論斷被各種媒體反復(fù)引用.出現(xiàn)這樣的統(tǒng)計(jì)結(jié)果無疑是令人尷尬的,而且和其他國家相比,我國國民的閱讀量如此之低,也和我國是傳統(tǒng)的文明古國、禮儀之邦的地位不相符.某小區(qū)為了提高小區(qū)內(nèi)人員的讀書興趣,特舉辦讀書活動(dòng),準(zhǔn)備進(jìn)一定量的書籍豐富小區(qū)圖書站,由于不同年齡段需看不同類型的書籍,為了合理配備資源,現(xiàn)對(duì)小區(qū)內(nèi)看書人員進(jìn)行年齡調(diào)查,隨機(jī)抽取了一天名讀書者進(jìn)行調(diào)查,將他們的年齡分成6段:,,,,,后得到如圖所示的頻率分布直方圖.問:
(1)估計(jì)在40名讀書者中年齡分布在的人數(shù);
(2)求40名讀書者年齡的平均數(shù)和中位數(shù);
(3)若從年齡在的讀書者中任取2名,求這兩名讀書者年齡在的人數(shù)的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著手機(jī)使用的不斷普及,現(xiàn)在全國各地的中小學(xué)生攜帶手機(jī)進(jìn)入校園已經(jīng)成為了普遍的現(xiàn)象,也引起了一系列的問題。然而,是堵還是疏,就擺在了我們學(xué)校老師的面前.某研究型學(xué)習(xí)小組調(diào)查研究“中學(xué)生使用手機(jī)對(duì)學(xué)習(xí)的影響”,部分統(tǒng)計(jì)數(shù)據(jù)如下表:
不使用手機(jī) | 使用手機(jī) | 合計(jì) | |
學(xué)習(xí)成績(jī)優(yōu)秀人數(shù) | 18 | 7 | 25 |
學(xué)習(xí)成績(jī)不優(yōu)秀人數(shù) | 6 | 19 | 25 |
合計(jì) | 24 | 26 | 50 |
參考數(shù)據(jù):,其中.
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(1)試根據(jù)以上數(shù)據(jù),運(yùn)用獨(dú)立性檢驗(yàn)思想,指出有多大把握認(rèn)為中學(xué)生使用手機(jī)對(duì)學(xué)習(xí)有影響?
(2)研究小組將該樣本中使用手機(jī)且成績(jī)優(yōu)秀的7位同學(xué)記為組,不使用手機(jī)且成績(jī)優(yōu)秀的18位同學(xué)記為組,計(jì)劃從組推選的2人和組推選的3人中,隨機(jī)挑選兩人來分享學(xué)習(xí)經(jīng)驗(yàn).求挑選的兩人中一人來自組、另一人來自組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù).
(1)當(dāng)時(shí),解不等式;
(2)若關(guān)于的方程的解集中恰好有一個(gè)元素,求的取值范圍;
(3)設(shè),若對(duì)任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過1,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是( )
A. y與x具有正的線性相關(guān)關(guān)系
B. 若給變量x一個(gè)值,由回歸直線方程=0.85x-85.71得到一個(gè),則為該統(tǒng)計(jì)量中的估計(jì)值
C. 若該大學(xué)某女生身高增加1 cm,則其體重約增加0.85 kg
D. 若該大學(xué)某女生身高為170 cm,則可斷定其體重必為58.79 kg
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)調(diào)查了某班全部50名同學(xué)參加書法社團(tuán)和演講社團(tuán)的情況,數(shù)據(jù)如下表:(單位:人)
參加書法社團(tuán) | 未參加書法社團(tuán) | |
參加演講社團(tuán) | 8 | 6 |
未參加演講社團(tuán) | 6 | 30 |
(I)從該班隨機(jī)選1名同學(xué),求該同學(xué)至少參加上述一個(gè)社團(tuán)的概率;
(II)在既參加書法社團(tuán)又參加演講社團(tuán)的8名同學(xué)中,有5名男同學(xué)A1,A2,A3,A4,A5,3名女同學(xué)B1,B2,B3,現(xiàn)從這5名男同學(xué)和3名女同學(xué)中各隨機(jī)選1人,求A1被選中且B1未被選中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)AB=6,在線段AB上任取兩點(diǎn)C、D(端點(diǎn)A、B除外),將線段AB分成三條線段AC、CD、DB.
(1)若分成的三條線段的長度均為正整數(shù),求這三條線段可以構(gòu)成三角形(稱為事件A)的概率;
(2)若分成的三條線段的長度均為正實(shí)數(shù),求這三條線段可以構(gòu)成三角形(稱為事件B)的概率;
(3)根據(jù)以下用計(jì)算機(jī)所產(chǎn)生的20組隨機(jī)數(shù),試用隨機(jī)數(shù)模擬的方法,來近似計(jì)算(2)中事件B的概率, 20組隨機(jī)數(shù)如下:
組別 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
X | 0.52 | 0.36 | 0.58 | 0.73 | 0.41 | 0.6 | 0.05 | 0.32 | 0.38 | 0.73 |
Y | 0.76 | 0.39 | 0.37 | 0.01 | 0.04 | 0.28 | 0.03 | 0.15 | 0.14 | 0.86 |
組別 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
X | 0.67 | 0.47 | 0.58 | 0.21 | 0.54 | 0.64 | 0.36 | 0.35 | 0.95 | 0.14 |
Y | 0.41 | 0.54 | 0.51 | 0.37 | 0.31 | 0.23 | 0.56 | 0.89 | 0.17 | 0.03> |
(X和Y都是0~1之間的均勻隨機(jī)數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若m個(gè)不全相等的正數(shù)a1 , a2 , …am依次圍成一個(gè)圓圈使每個(gè)ak(1≤k≤m,k∈N)都是其左右相鄰兩個(gè)數(shù)平方的等比中項(xiàng),則正整數(shù)m的最小值是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com