【題目】設(shè)函數(shù),其中為正實(shí)數(shù).

(1)若不等式恒成立,求實(shí)數(shù)的取值范圍;

(2)當(dāng)時(shí),證明.

【答案】12)見解析

【解析】

(1)討論研究函數(shù)的單調(diào)性,求出函數(shù)上的最大值.要不等式恒成立,只需最大值小于零,即可求出.

(2)將原不等式等價(jià)變形為,由(1)可知,試證時(shí)恒成立,即可由不等式性質(zhì)證出

1)由題意得

設(shè),則

①當(dāng)時(shí),即時(shí),

所以函數(shù)上單調(diào)遞增,,滿足題意;

②當(dāng)時(shí),即時(shí),則的圖象的對(duì)稱軸

因?yàn)?/span>

所以上存在唯一實(shí)根,設(shè)為,則當(dāng)時(shí),,

當(dāng)時(shí),

所以上單調(diào)遞增,在上單調(diào)遞減,

此時(shí),不合題意.

綜上可得,實(shí)數(shù)的取值范圍是

2等價(jià)于

因?yàn)?/span>,所以,所以原不等式等價(jià)于,

(1)知當(dāng)時(shí),上恒成立,整理得

,則,

所以函數(shù)在區(qū)間上單調(diào)遞增,

所以,即上恒成立.

所以,當(dāng)時(shí),恒有

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一走廊拐角處的橫截面如圖所示,已知內(nèi)壁和外壁都是半徑為1m的四分之一圓弧分別與圓弧相切于兩點(diǎn),且兩組平行墻壁間的走廊寬度都是1m.

1若水平放置的木棒的兩個(gè)端點(diǎn)分別在外壁,且木棒與內(nèi)壁圓弧相切于點(diǎn)設(shè)試用表示木棒的長(zhǎng)度

2若一根水平放置的木棒能通過該走廊拐角處,求木棒長(zhǎng)度的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)20行若干列的0,1數(shù)陣滿足各列互不相同且任意兩列中同一行都取1的行數(shù)不超過2.求當(dāng)列數(shù)最多時(shí),數(shù)陣中1的個(gè)數(shù)的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—5:不等式選講

已知函數(shù)

(1)當(dāng)時(shí),求不等式的解集;

(2) |的解集包含,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l過點(diǎn)A(-1,0)且與⊙B:相切于點(diǎn)D,以坐標(biāo)軸為對(duì)稱軸的雙曲線E過點(diǎn)D,一條漸近線平行于l,則E的離心率為( )

A. B. 2 C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面為矩形,⊥平面,的中點(diǎn).

(Ⅰ)證明:∥平面;

(Ⅱ)設(shè)二面角為60°,=1,=,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)的圖象是由函數(shù)的圖象經(jīng)如下變換得到:先將g(x)圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來的2(橫坐標(biāo)不變),再將所得到的圖象向右平移個(gè)單位長(zhǎng)度.

1)求函數(shù)f(x)的解析式,并求其圖象的對(duì)稱軸方程;

2)已知關(guān)于x的方程f(x)+g(x)=m內(nèi)有兩個(gè)不同的解.

①求實(shí)數(shù)m的取值范圍;

②證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)內(nèi)有兩個(gè)極值點(diǎn)x1x2x1x2),其中a為常數(shù).

1)求實(shí)數(shù)a的取值范圍;

2)求證:x1+x22.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù)有如下四個(gè)結(jié)論:

是偶函數(shù);②在區(qū)間上單調(diào)遞增;③最大值為;④上有四個(gè)零點(diǎn),其中正確命題的序號(hào)是_______

查看答案和解析>>

同步練習(xí)冊(cè)答案