【題目】O為△ABC內(nèi)一點(diǎn),且2 , =t ,若B,O,D三點(diǎn)共線(xiàn),則t的值為( )
A.
B.
C.
D.
【答案】B
【解析】解:以O(shè)B,OC為鄰邊作平行四邊形OBFC,連接OF與 BC相交于點(diǎn)E,E為BC的中點(diǎn).∵2 ,∴ =﹣2 = =2 ,
∴點(diǎn)O是直線(xiàn)AE的中點(diǎn).
∵B,O,D三點(diǎn)共線(xiàn), =t ,∴點(diǎn)D是BO與AC的交點(diǎn).
過(guò)點(diǎn)O作OM∥BC交AC于點(diǎn)M,則點(diǎn)M為AC的中點(diǎn).
則OM= EC= BC,
∴ = ,
∴ ,
∴AD= AM= AC, =t ,
∴t= .
故選:B.
以O(shè)B,OC為鄰邊作平行四邊形OBFC,連接OF與 BC相交于點(diǎn)E,E為BC的中點(diǎn).2 ,可得 =﹣2 = =2 ,因此點(diǎn)O是直線(xiàn)AE的中點(diǎn).可得B,O,D三點(diǎn)共線(xiàn), =t ,∴點(diǎn)D是BO與AC的交點(diǎn).過(guò)點(diǎn)O作OM∥BC交AC于點(diǎn)M,點(diǎn)M為AC的中點(diǎn).利用平行線(xiàn)的性質(zhì)即可得出.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)=x﹣ sin2x+asinx在(﹣∞,+∞)單調(diào)遞增,則a的取值范圍是( )
A.[﹣1,1]
B.[﹣1, ]
C.[﹣ , ]
D.[﹣1,﹣ ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在單調(diào)遞增數(shù)列{an}中,a1=2,a2=4,且a2n﹣1 , a2n , a2n+1成等差數(shù)列,a2n , a2n+1 , a2n+2成等比數(shù)列,n=1,2,3,….
(Ⅰ)(。┣笞C:數(shù)列 為等差數(shù)列;
(ⅱ)求數(shù)列{an}的通項(xiàng)公式.
(Ⅱ)設(shè)數(shù)列 的前n項(xiàng)和為Sn , 證明:Sn> ,n∈N* .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊長(zhǎng)分別為a,b,c,且cos = .
(1)若a=3,b= ,求c的值;
(2)若f(A)=sin ( cos ﹣sin )+ ,求f(A)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形ADEF與梯形ABCD所在平面互相垂直,AD⊥CD,AB∥CD,AB=AD= CD=2,點(diǎn)M是EC中點(diǎn). (Ⅰ)求證:BM∥平面ADEF;
(Ⅱ)求三棱錐M﹣BDE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列{an}中,a1=1,an﹣an+1=anan+1 , n∈N* .
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)Sn為{an}的前n項(xiàng)和,bn=S2n﹣Sn , 求bn的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代數(shù)學(xué)典籍《九章算術(shù)》“盈不足”中有一道問(wèn)題:“今有垣高九尺,瓜生其上,蔓日長(zhǎng)七寸;瓠生其下,蔓日長(zhǎng)一尺,問(wèn)幾何日相逢?”現(xiàn)用程序框圖描述,如圖所示,則輸出的結(jié)果n=( )
A.4
B.5
C.6
D.7
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩定點(diǎn)F1(﹣ ,0),F(xiàn)2( ,0),滿(mǎn)足條件|PF2|﹣|PF1|=2的點(diǎn)P的軌跡是曲線(xiàn)E.
(1)求曲線(xiàn)E的方程;
(2)設(shè)過(guò)點(diǎn)(0,﹣1)的直線(xiàn)與曲線(xiàn)E交于A,B兩點(diǎn).如果|AB|=6 ,求直線(xiàn)AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若四面體ABCD的三組對(duì)棱分別相等,即AB=CD,AC=BD,AD=BC,則(寫(xiě)出所有正確結(jié)論編號(hào)) ①四面體ABCD每組對(duì)棱相互垂直
②四面體ABCD每個(gè)面的面積相等
③從四面體ABCD每個(gè)頂點(diǎn)出發(fā)的三條棱兩兩夾角之和大于90°而小于180°
④連接四面體ABCD每組對(duì)棱中點(diǎn)的線(xiàn)段互垂直平分
⑤從四面體ABCD每個(gè)頂點(diǎn)出發(fā)的三條棱的長(zhǎng)可作為一個(gè)三角形的三邊長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com