[2014·上海模擬]某位股民購(gòu)進(jìn)某支股票,在接下來(lái)的交易時(shí)間內(nèi),他的這支股票先經(jīng)歷了n次漲停(每次上漲10%),又經(jīng)歷了n次跌停(每次下跌10%),則該股民這支股票的盈虧情況(不考慮其他費(fèi)用)為( )
A.略有盈利 | B.略有虧損 |
C.沒有盈利也沒有虧損 | D.無(wú)法判斷盈虧情況 |
設(shè)該股民購(gòu)這支股票的價(jià)格為a,則經(jīng)歷n次漲停后的價(jià)格為a(1+10%)n=a×1.1n,經(jīng)歷n次跌停后的價(jià)格為a×1.1n×(1-10%)n=a×1.1n×0.9n=a×(1.1×0.9)n=0.99n·a<a,故該股民這支股票略有虧損.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
甲同學(xué)家到乙同學(xué)家的途中有一公園,甲從家到公園的距離與乙從家到公園的距離都是2 km,甲10時(shí)出發(fā)前往乙家.如圖所示,表示甲從家出發(fā)到達(dá)乙家為止經(jīng)過的路程y(km)與時(shí)間x(分)的關(guān)系.試寫出y=f(x)的函數(shù)解析式.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
定義在R上的函數(shù)f(x)滿足f(m+n2)=f(m)+2[f(n)]2,m,n∈R,且f(1)≠0,則f(2 014)=________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
設(shè)函數(shù)f(x)滿足f(x)=1+f
log
2x,則f(2)=________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(12分)(2011•湖北)提高過江大橋的車輛通行能力可改善整個(gè)城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時(shí))是車流密度x(單位:輛/千米)的函數(shù),當(dāng)橋上的車流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車流速度為0;當(dāng)車流密度不超過20輛/千米時(shí),車流速度為60千米/小時(shí),研究表明:當(dāng)20≤x≤200時(shí),車流速度v是車流密度x的一次函數(shù).
(Ⅰ)當(dāng)0≤x≤200時(shí),求函數(shù)v(x)的表達(dá)式;
(Ⅱ)當(dāng)車流密度x為多大時(shí),車流量(單位時(shí)間內(nèi)通過橋上某觀測(cè)點(diǎn)的車輛數(shù),單位:輛/小時(shí))f(x)=x•v(x)可以達(dá)到最大,并求出最大值.(精確到1輛/小時(shí)).
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知函數(shù)
定義在
上,對(duì)任意的
,
,且
.
(1)求
,并證明:
;
(2)若
單調(diào),且
.設(shè)向量
,對(duì)任意
,
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
(2011•山東)曲線y=x
3+11在點(diǎn)P(1,12)處的切線與y軸交點(diǎn)的縱坐標(biāo)是( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
函數(shù)
在
內(nèi) ( )
A.沒有零點(diǎn) | B.有且僅有一個(gè)零點(diǎn) |
C.有且僅有兩個(gè)零點(diǎn) | D.有無(wú)窮多個(gè)零點(diǎn) |
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
設(shè)
,
的整數(shù)部分用
表示,則
的值是
.
查看答案和解析>>