【題目】已知圓,直線與圓相切,且交橢圓, 兩點(diǎn), 是橢圓的半焦距, .

(1)求的值;

(2)為坐標(biāo)原點(diǎn),若,求橢圓的方程;

(3)在(2)的條件下,設(shè)橢圓的左右頂點(diǎn)分別為, ,動(dòng)點(diǎn),直線, 與直線分別交于 兩點(diǎn),求線段的長(zhǎng)度的最小值.

【答案】(1);(2);(3).

【解析】試題分析: (1)利用直線與圓相切,根據(jù)點(diǎn)到直線的距離公式,可求的值;
(2)直線代入橢圓,根據(jù),利用韋達(dá)定理,可求橢圓的方程;
(3)設(shè)直線AS的方程為,從而,,得,求出的坐標(biāo),進(jìn)而可求的坐標(biāo),即可求出線段的長(zhǎng)度的最小值.

試題解析:(1)直線與圓相切,所以, .

(2)將代入得

得: ,

設(shè) ,則

, ,

,因?yàn)?/span>

,

由已知 代入,

所以橢圓的方程為.

(3)顯然直線的斜率存在,設(shè)為

依題意,由得: ,

設(shè),則,

,又,所以

.

,

.

所以時(shí), .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,正方體ABCD﹣A1B1C1D1的棱長(zhǎng)為8cm,M,N,P分別是AB,A1D1 , BB1的中點(diǎn).
(1)畫(huà)出過(guò)M,N,P三點(diǎn)的平面與平面A1B1C1D1的交線以及與平面BB1C1C的交線;
(2)設(shè)過(guò)M,N,P三點(diǎn)的平面與B1C1交于Q,求PQ的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某漁業(yè)公司今年年初用98萬(wàn)元購(gòu)進(jìn)一艘漁船用于捕撈,第一年需要各種費(fèi)用12萬(wàn)元.從第二年起包括維修費(fèi)在內(nèi)每年所需費(fèi)用比上一年增加4萬(wàn)元.該船每年捕撈總收入50萬(wàn)元.

(1)問(wèn)捕撈幾年后總盈利最大,最大是多少?

(2)問(wèn)捕撈幾年后的平均利潤(rùn)最大,最大是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a,b,c,d∈E,證明下列不等式:
(1)(a2+b2)(c2+d2)≥(ac+bd)2;
(2)a2+b2+c2≥ab+bc+ca.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若不等式1-ax2-4x+6>0的解集是{x|-3<x<1}.

(1)解不等式2x22-ax-a>0;

(2)b為何值時(shí),ax2+bx+30的解集為R.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中
①函數(shù)f(x)=( x的遞減區(qū)間是(﹣∞,+∞)
②已知函數(shù)f(x)的定義域?yàn)椋?,1),則函數(shù)f(x+1)的定義域?yàn)椋?,2);
③已知(x,y)映射f下的象是(x+y,x﹣y),那么(4,2)在f下的原象是(3,1).
其中正確命題的序號(hào)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列給出四組函數(shù),表示同一函數(shù)的是(
A.f(x)=x,g(x)=
B.f(x)=2x+1,g(x)=2x﹣1
C.f(x)=x,g(x)=
D.f(x)=1,g(x)=x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:正三棱柱中, , 為棱的中點(diǎn).

)求證: 平面

)求證:平面平面

)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)關(guān)于的一元二次方程

(1)若是從0,1,2,3四個(gè)數(shù)中任取的一個(gè)數(shù), 是從0,1,2三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程有實(shí)根的概率;

(2)若時(shí)從區(qū)間上任取的一個(gè)數(shù), 是從區(qū)間上任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案