【題目】已知函數(shù),關(guān)于x的方程有三個不等實(shí)根,則實(shí)數(shù)m的取值范圍是________

【答案】

【解析】

先求出函數(shù)的單調(diào)區(qū)間,方程有三個不等實(shí)根,設(shè),即研究方程的根的情況,即研究方程的根的情況,再根據(jù),得出方程的兩個實(shí)數(shù)根滿足,從而由二次方程實(shí)根的分布求出參數(shù)的范圍.

由函數(shù),有.

,得,,得,

所以上單調(diào)遞增,在上單調(diào)遞減.

,當(dāng)時,,且時,

, ,

的大致圖象如下.

方程有三個不等實(shí)根,設(shè),

即研究方程的根的情況,即研究方程的根的情況.

若方程無實(shí)數(shù)根或只有一個實(shí)數(shù)根,則由可知原方程至多有2個實(shí)數(shù)根,不滿足條件.

所以方程有兩個不等實(shí)數(shù)根,設(shè)為,設(shè).

方程有三個不等實(shí)根,根據(jù)函數(shù)圖象,

則有有一個實(shí)數(shù)根,有兩個實(shí)數(shù)根,

即有,

的兩個實(shí)數(shù)根滿足

設(shè)函數(shù),

,所以有,得

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某省從2021年開始,高考采用取消文理分科,實(shí)行的模式,其中的“1”表示每位學(xué)生必須從物理、歷史中選擇一個科目且只能選擇一個科目.某校高一年級有2000名學(xué)生(其中女生900人).該校為了解高一年級學(xué)生對“1”的選課情況,采用分層抽樣的方法抽取了200名學(xué)生進(jìn)行問卷調(diào)查,下表是根據(jù)調(diào)查結(jié)果得到的列聯(lián)表.

性別

選擇物理

選擇歷史

總計

男生

________

50

女生

30

________

總計

________

________

200

1)求,的值;

2)請你依據(jù)該列聯(lián)表判斷是否有99.5%的把握認(rèn)為選擇科目與性別有關(guān)?說明你的理由.

0.100

0.050

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

附:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩焦點(diǎn)為,,且橢圓上一點(diǎn),滿足,直線與橢圓交于兩點(diǎn),與軸、軸分別交于點(diǎn)、,且.

1)求橢圓的方程;

2)若,且,求的值;

3)當(dāng)△面積取得最大值,且點(diǎn)在橢圓上時,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動點(diǎn)在雙曲線上,雙曲線的左、右焦點(diǎn)分別為,下列結(jié)論正確的是(

A.的離心率為

B.的漸近線方程為

C.動點(diǎn)到兩條漸近線的距離之積為定值

D.當(dāng)動點(diǎn)在雙曲線的左支上時,的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年是新中國成立七十周年,新中國成立以來,我國文化事業(yè)得到了充分發(fā)展,尤其是黨的十八大以來,文化事業(yè)發(fā)展更加迅速,下圖是從2013 年到 2018 年六年間我國公共圖書館業(yè)機(jī)構(gòu)數(shù)(個)與對應(yīng)年份編號的散點(diǎn)圖(為便于計算,將 2013 年編號為 1,2014 年編號為 2,…,2018年編號為 6,把每年的公共圖書館業(yè)機(jī)構(gòu)個數(shù)作為因變量,把年份編號從 1 到 6 作為自變量進(jìn)行回歸分析),得到回歸直線,其相關(guān)指數(shù),給出下列結(jié)論,其中正確的個數(shù)是( )

①公共圖書館業(yè)機(jī)構(gòu)數(shù)與年份的正相關(guān)性較強(qiáng)

②公共圖書館業(yè)機(jī)構(gòu)數(shù)平均每年增加13.743個

③可預(yù)測 2019 年公共圖書館業(yè)機(jī)構(gòu)數(shù)約為3192個

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中,為自然對數(shù)的底數(shù).

1)若,求函數(shù)處的切線方程;

2)若函數(shù)在定義域上恰有兩個不同的零點(diǎn),求實(shí)數(shù)a的取值范圍;

3)設(shè)函數(shù)在區(qū)間)上存在極值,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)時,求曲線與曲線的公切線的方程;

2)設(shè)函數(shù)的兩個極值點(diǎn)為,求證:關(guān)于的方程有唯一解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2020年春節(jié)突如其來的新型冠狀病毒肺炎在湖北爆發(fā),一方有難八方支援,全國各地的白衣天使走上戰(zhàn)場的第一線,某醫(yī)院抽調(diào)甲、乙兩名醫(yī)生,抽調(diào)、、三名護(hù)士支援武漢第一醫(yī)院與第二醫(yī)院,參加武漢疫情狙擊戰(zhàn)其中選一名護(hù)士與一名醫(yī)生去第一醫(yī)院,其它都在第二醫(yī)院工作,則醫(yī)生甲和護(hù)士被選在第一醫(yī)院工作的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,平面平面,.

1)求證:;

2)當(dāng)直線與平面所成角為時,求二面角平面角的大小.

查看答案和解析>>

同步練習(xí)冊答案